Cargando…

Pharmacological read-through of nonsense ARSB mutations as a potential therapeutic approach for mucopolysaccharidosis VI

Mucopolysaccharidosis type VI (MPS VI) is a severe lysosomal storage disorder without central nervous system involvement caused by arylsulfatase B (ARSB) deficiency. MPS VI is characterized by dysostosis multiplex, corneal clouding, heart valve defects and urinary excretion of glycosaminoglycans (GA...

Descripción completa

Detalles Bibliográficos
Autores principales: Bartolomeo, Rosa, Polishchuk, Elena V., Volpi, Nicola, Polishchuk, Roman S., Auricchio, Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590409/
https://www.ncbi.nlm.nih.gov/pubmed/22971959
http://dx.doi.org/10.1007/s10545-012-9521-y
_version_ 1782261855676268544
author Bartolomeo, Rosa
Polishchuk, Elena V.
Volpi, Nicola
Polishchuk, Roman S.
Auricchio, Alberto
author_facet Bartolomeo, Rosa
Polishchuk, Elena V.
Volpi, Nicola
Polishchuk, Roman S.
Auricchio, Alberto
author_sort Bartolomeo, Rosa
collection PubMed
description Mucopolysaccharidosis type VI (MPS VI) is a severe lysosomal storage disorder without central nervous system involvement caused by arylsulfatase B (ARSB) deficiency. MPS VI is characterized by dysostosis multiplex, corneal clouding, heart valve defects and urinary excretion of glycosaminoglycans (GAGs). The current treatment for MPS VI is enzyme replacement therapy (ERT) which has limited efficacy on bone, joints and heart valve disease, as well as high costs. A potential therapeutic approach for the subgroup of MPS VI patients that carry nonsense mutations is to enhance stop-codon read-through, using small molecules, to restore production of the full-length ARSB protein. In this study we investigated whether two compounds known to induce stop codon read-through, the aminoglycoside gentamicin and PTC124, can promote read-through of four different ARSB nonsense mutations (p.R315X, p.R327X, p.Q456X and p.Q503X) associated with MPS VI and enable the synthesis of full-length functional ARSB protein in patients fibroblast cell lines. Our study demonstrates that PTC124 but not gentamicin, increases the level of ARSB activity in three MPS VI patient fibroblast cell lines. In two of them the levels of ARSB activity obtained were significantly higher than in untreated cells, reaching ≤2.5 % of those detected in wild-type fibroblasts and resulting in significant reduction of lysosomal size. Since even small increases in enzyme activity can dramatically influence the clinical phenotype of MPS VI, our study suggests that pharmacological read-through may be combined with ERT potentially increasing therapeutic efficacy in those patients bearing nonsense ARSB mutations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10545-012-9521-y) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-3590409
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Springer Netherlands
record_format MEDLINE/PubMed
spelling pubmed-35904092013-03-07 Pharmacological read-through of nonsense ARSB mutations as a potential therapeutic approach for mucopolysaccharidosis VI Bartolomeo, Rosa Polishchuk, Elena V. Volpi, Nicola Polishchuk, Roman S. Auricchio, Alberto J Inherit Metab Dis Original Article Mucopolysaccharidosis type VI (MPS VI) is a severe lysosomal storage disorder without central nervous system involvement caused by arylsulfatase B (ARSB) deficiency. MPS VI is characterized by dysostosis multiplex, corneal clouding, heart valve defects and urinary excretion of glycosaminoglycans (GAGs). The current treatment for MPS VI is enzyme replacement therapy (ERT) which has limited efficacy on bone, joints and heart valve disease, as well as high costs. A potential therapeutic approach for the subgroup of MPS VI patients that carry nonsense mutations is to enhance stop-codon read-through, using small molecules, to restore production of the full-length ARSB protein. In this study we investigated whether two compounds known to induce stop codon read-through, the aminoglycoside gentamicin and PTC124, can promote read-through of four different ARSB nonsense mutations (p.R315X, p.R327X, p.Q456X and p.Q503X) associated with MPS VI and enable the synthesis of full-length functional ARSB protein in patients fibroblast cell lines. Our study demonstrates that PTC124 but not gentamicin, increases the level of ARSB activity in three MPS VI patient fibroblast cell lines. In two of them the levels of ARSB activity obtained were significantly higher than in untreated cells, reaching ≤2.5 % of those detected in wild-type fibroblasts and resulting in significant reduction of lysosomal size. Since even small increases in enzyme activity can dramatically influence the clinical phenotype of MPS VI, our study suggests that pharmacological read-through may be combined with ERT potentially increasing therapeutic efficacy in those patients bearing nonsense ARSB mutations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10545-012-9521-y) contains supplementary material, which is available to authorized users. Springer Netherlands 2012-09-13 2013 /pmc/articles/PMC3590409/ /pubmed/22971959 http://dx.doi.org/10.1007/s10545-012-9521-y Text en © The Author(s) 2012 https://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
spellingShingle Original Article
Bartolomeo, Rosa
Polishchuk, Elena V.
Volpi, Nicola
Polishchuk, Roman S.
Auricchio, Alberto
Pharmacological read-through of nonsense ARSB mutations as a potential therapeutic approach for mucopolysaccharidosis VI
title Pharmacological read-through of nonsense ARSB mutations as a potential therapeutic approach for mucopolysaccharidosis VI
title_full Pharmacological read-through of nonsense ARSB mutations as a potential therapeutic approach for mucopolysaccharidosis VI
title_fullStr Pharmacological read-through of nonsense ARSB mutations as a potential therapeutic approach for mucopolysaccharidosis VI
title_full_unstemmed Pharmacological read-through of nonsense ARSB mutations as a potential therapeutic approach for mucopolysaccharidosis VI
title_short Pharmacological read-through of nonsense ARSB mutations as a potential therapeutic approach for mucopolysaccharidosis VI
title_sort pharmacological read-through of nonsense arsb mutations as a potential therapeutic approach for mucopolysaccharidosis vi
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590409/
https://www.ncbi.nlm.nih.gov/pubmed/22971959
http://dx.doi.org/10.1007/s10545-012-9521-y
work_keys_str_mv AT bartolomeorosa pharmacologicalreadthroughofnonsensearsbmutationsasapotentialtherapeuticapproachformucopolysaccharidosisvi
AT polishchukelenav pharmacologicalreadthroughofnonsensearsbmutationsasapotentialtherapeuticapproachformucopolysaccharidosisvi
AT volpinicola pharmacologicalreadthroughofnonsensearsbmutationsasapotentialtherapeuticapproachformucopolysaccharidosisvi
AT polishchukromans pharmacologicalreadthroughofnonsensearsbmutationsasapotentialtherapeuticapproachformucopolysaccharidosisvi
AT auricchioalberto pharmacologicalreadthroughofnonsensearsbmutationsasapotentialtherapeuticapproachformucopolysaccharidosisvi