Cargando…
A Danger-Theory-Based Immune Network Optimization Algorithm
Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger theory emphasizes that danger signals generate...
Autores principales: | Zhang, Ruirui, Li, Tao, Xiao, Xin, Shi, Yuanquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590445/ https://www.ncbi.nlm.nih.gov/pubmed/23483853 http://dx.doi.org/10.1155/2013/810320 |
Ejemplares similares
-
Securing Mobile Ad Hoc Networks Using Danger Theory-Based Artificial Immune Algorithm
por: Abdelhaq, Maha, et al.
Publicado: (2015) -
Injury and immune response: applying the danger theory to mosquitoes
por: Moreno-García, Miguel, et al.
Publicado: (2014) -
Coming to Grips With Dangerous Algorithms
por: Mancha, Ruben
Publicado: (2018) -
Outbreak detection model based on danger theory
por: Mohamad Mohsin, Mohamad Farhan, et al.
Publicado: (2014) -
Node Deployment Optimization for Wireless Sensor Networks Based on Virtual Force-Directed Particle Swarm Optimization Algorithm and Evidence Theory
por: Wu, Liangshun, et al.
Publicado: (2022)