Cargando…
Single Directional SMO Algorithm for Least Squares Support Vector Machines
Working set selection is a major step in decomposition methods for training least squares support vector machines (LS-SVMs). In this paper, a new technique for the selection of working set in sequential minimal optimization- (SMO-) type decomposition methods is proposed. By the new method, we can se...
Autores principales: | Shao, Xigao, Wu, Kun, Liao, Bifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590457/ https://www.ncbi.nlm.nih.gov/pubmed/23509447 http://dx.doi.org/10.1155/2013/968438 |
Ejemplares similares
-
Gene selection algorithms for microarray data based on least squares support vector machine
por: Tang, E Ke, et al.
Publicado: (2006) -
Employing Ray-Tracing and Least-Squares Support Vector Machines for Localisation †
por: Chitambira, Benny, et al.
Publicado: (2018) -
Global-local least-squares support vector machine (GLocal-LS-SVM)
por: Youssef Ali Amer, Ahmed
Publicado: (2023) -
A Nonlinear Adaptive Beamforming Algorithm Based on Least Squares Support Vector Regression
por: Wang, Lutao, et al.
Publicado: (2012) -
Fast Algorithms for Structured Least Squares and Total Least Squares Problems
por: Kalsi, Anoop, et al.
Publicado: (2006)