Cargando…
A functional analysis of deception detection of a mock crime using infrared thermal imaging and the Concealed Information Test
The purpose of this study was to utilize thermal imaging and the Concealed Information Test to detect deception in participants who committed a mock crime. A functional analysis using a functional ANOVA and a functional discriminant analysis was conducted to decrease the variation in the physiologic...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590493/ https://www.ncbi.nlm.nih.gov/pubmed/23470924 http://dx.doi.org/10.3389/fnhum.2013.00070 |
Sumario: | The purpose of this study was to utilize thermal imaging and the Concealed Information Test to detect deception in participants who committed a mock crime. A functional analysis using a functional ANOVA and a functional discriminant analysis was conducted to decrease the variation in the physiological data collected through the thermal imaging camera. Participants chose between a non-crime mission (Innocent Condition: IC), or a mock crime (Guilty Condition: GC) of stealing a wallet in a computer lab. Temperature in the periorbital region of the face was measured while questioning participants regarding mock crime details. Results revealed that the GC showed significantly higher temperatures when responding to crime relevant items compared to irrelevant items, while the IC did not. The functional ANOVA supported the initial results that facial temperatures of the GC elevated when responding to crime relevant items, demonstrating an interaction between group (guilty/innocent) and relevance (relevant/irrelevant). The functional discriminant analysis revealed that answering crime relevant items can be used to discriminate guilty from innocent participants. These results suggest that measuring facial temperatures in the periorbital region while conducting the Concealed Information Test is able to differentiate the GC from the IC. |
---|