Cargando…

Visualizing Transient Low-Populated Structures of RNA

The visualization of RNA conformational changes has provided fundamental insights into how regulatory RNAs carry out their biological functions. The RNA structural transitions that have been characterized to date involve long-lived species that can be captured by structure characterization technique...

Descripción completa

Detalles Bibliográficos
Autores principales: Dethoff, Elizabeth A., Petzold, Katja, Chugh, Jeetender, Casiano-Negroni, Anette, Al-Hashimi, Hashim M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590852/
https://www.ncbi.nlm.nih.gov/pubmed/23041928
http://dx.doi.org/10.1038/nature11498
Descripción
Sumario:The visualization of RNA conformational changes has provided fundamental insights into how regulatory RNAs carry out their biological functions. The RNA structural transitions that have been characterized to date involve long-lived species that can be captured by structure characterization techniques. Here, we report the Nuclear Magnetic Resonance visualization of RNA transitions towards invisible ‘excited states’ (ES), which exist in too little abundance (2–13%) and for too short periods of time (45–250 μs) to allow structural characterization by conventional techniques. Transitions towards ESs result in localized rearrangements in base-pairing that alter building block elements of RNA architecture, including helix-junction-helix motifs and apical loops. The ES can inhibit function by sequestering residues involved in recognition and signaling or promote ATP-independent strand exchange. Thus, RNAs do not adopt a single conformation, but rather exist in rapid equilibrium with alternative ESs, which can be stabilized by cellular cues to affect functional outcomes.