Cargando…
Dirichlet negative multinomial regression for overdispersed correlated count data
A generic random effects formulation for the Dirichlet negative multinomial distribution is developed together with a convenient regression parameterization. A simulation study indicates that, even when somewhat misspecified, regression models based on the Dirichlet negative multinomial distribution...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590929/ https://www.ncbi.nlm.nih.gov/pubmed/23221819 http://dx.doi.org/10.1093/biostatistics/kxs050 |
_version_ | 1782261944232706048 |
---|---|
author | Farewell, Daniel M. Farewell, Vernon T. |
author_facet | Farewell, Daniel M. Farewell, Vernon T. |
author_sort | Farewell, Daniel M. |
collection | PubMed |
description | A generic random effects formulation for the Dirichlet negative multinomial distribution is developed together with a convenient regression parameterization. A simulation study indicates that, even when somewhat misspecified, regression models based on the Dirichlet negative multinomial distribution have smaller median absolute error than generalized estimating equations, with a particularly pronounced improvement when correlation between observations in a cluster is high. Estimation of explanatory variable effects and sources of variation is illustrated for a study of clinical trial recruitment. |
format | Online Article Text |
id | pubmed-3590929 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-35909292013-03-07 Dirichlet negative multinomial regression for overdispersed correlated count data Farewell, Daniel M. Farewell, Vernon T. Biostatistics Articles A generic random effects formulation for the Dirichlet negative multinomial distribution is developed together with a convenient regression parameterization. A simulation study indicates that, even when somewhat misspecified, regression models based on the Dirichlet negative multinomial distribution have smaller median absolute error than generalized estimating equations, with a particularly pronounced improvement when correlation between observations in a cluster is high. Estimation of explanatory variable effects and sources of variation is illustrated for a study of clinical trial recruitment. Oxford University Press 2013-04 2012-12-05 /pmc/articles/PMC3590929/ /pubmed/23221819 http://dx.doi.org/10.1093/biostatistics/kxs050 Text en © The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Farewell, Daniel M. Farewell, Vernon T. Dirichlet negative multinomial regression for overdispersed correlated count data |
title | Dirichlet negative multinomial regression for overdispersed correlated count
data |
title_full | Dirichlet negative multinomial regression for overdispersed correlated count
data |
title_fullStr | Dirichlet negative multinomial regression for overdispersed correlated count
data |
title_full_unstemmed | Dirichlet negative multinomial regression for overdispersed correlated count
data |
title_short | Dirichlet negative multinomial regression for overdispersed correlated count
data |
title_sort | dirichlet negative multinomial regression for overdispersed correlated count
data |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590929/ https://www.ncbi.nlm.nih.gov/pubmed/23221819 http://dx.doi.org/10.1093/biostatistics/kxs050 |
work_keys_str_mv | AT farewelldanielm dirichletnegativemultinomialregressionforoverdispersedcorrelatedcountdata AT farewellvernont dirichletnegativemultinomialregressionforoverdispersedcorrelatedcountdata |