Cargando…

Dirichlet negative multinomial regression for overdispersed correlated count data

A generic random effects formulation for the Dirichlet negative multinomial distribution is developed together with a convenient regression parameterization. A simulation study indicates that, even when somewhat misspecified, regression models based on the Dirichlet negative multinomial distribution...

Descripción completa

Detalles Bibliográficos
Autores principales: Farewell, Daniel M., Farewell, Vernon T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590929/
https://www.ncbi.nlm.nih.gov/pubmed/23221819
http://dx.doi.org/10.1093/biostatistics/kxs050
_version_ 1782261944232706048
author Farewell, Daniel M.
Farewell, Vernon T.
author_facet Farewell, Daniel M.
Farewell, Vernon T.
author_sort Farewell, Daniel M.
collection PubMed
description A generic random effects formulation for the Dirichlet negative multinomial distribution is developed together with a convenient regression parameterization. A simulation study indicates that, even when somewhat misspecified, regression models based on the Dirichlet negative multinomial distribution have smaller median absolute error than generalized estimating equations, with a particularly pronounced improvement when correlation between observations in a cluster is high. Estimation of explanatory variable effects and sources of variation is illustrated for a study of clinical trial recruitment.
format Online
Article
Text
id pubmed-3590929
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-35909292013-03-07 Dirichlet negative multinomial regression for overdispersed correlated count data Farewell, Daniel M. Farewell, Vernon T. Biostatistics Articles A generic random effects formulation for the Dirichlet negative multinomial distribution is developed together with a convenient regression parameterization. A simulation study indicates that, even when somewhat misspecified, regression models based on the Dirichlet negative multinomial distribution have smaller median absolute error than generalized estimating equations, with a particularly pronounced improvement when correlation between observations in a cluster is high. Estimation of explanatory variable effects and sources of variation is illustrated for a study of clinical trial recruitment. Oxford University Press 2013-04 2012-12-05 /pmc/articles/PMC3590929/ /pubmed/23221819 http://dx.doi.org/10.1093/biostatistics/kxs050 Text en © The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Farewell, Daniel M.
Farewell, Vernon T.
Dirichlet negative multinomial regression for overdispersed correlated count data
title Dirichlet negative multinomial regression for overdispersed correlated count data
title_full Dirichlet negative multinomial regression for overdispersed correlated count data
title_fullStr Dirichlet negative multinomial regression for overdispersed correlated count data
title_full_unstemmed Dirichlet negative multinomial regression for overdispersed correlated count data
title_short Dirichlet negative multinomial regression for overdispersed correlated count data
title_sort dirichlet negative multinomial regression for overdispersed correlated count data
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590929/
https://www.ncbi.nlm.nih.gov/pubmed/23221819
http://dx.doi.org/10.1093/biostatistics/kxs050
work_keys_str_mv AT farewelldanielm dirichletnegativemultinomialregressionforoverdispersedcorrelatedcountdata
AT farewellvernont dirichletnegativemultinomialregressionforoverdispersedcorrelatedcountdata