Cargando…
Integrative Analysis Using Module-Guided Random Forests Reveals Correlated Genetic Factors Related to Mouse Weight
Complex traits such as obesity are manifestations of intricate interactions of multiple genetic factors. However, such relationships are difficult to identify. Thanks to the recent advance in high-throughput technology, a large amount of data has been collected for various complex traits, including...
Autores principales: | Chen, Zheng, Zhang, Weixiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591263/ https://www.ncbi.nlm.nih.gov/pubmed/23505362 http://dx.doi.org/10.1371/journal.pcbi.1002956 |
Ejemplares similares
-
Integrating Genetic and Network Analysis to Characterize Genes Related to Mouse Weight
por: Ghazalpour, Anatole, et al.
Publicado: (2006) -
Weighted Random Forests to Improve Arrhythmia Classification
por: Gajowniczek, Krzysztof, et al.
Publicado: (2020) -
Detection of Association Features Based on Gene Eigenvalues and MRI Imaging Using Genetic Weighted Random Forest
por: Hu, Zhixi, et al.
Publicado: (2022) -
Integrating biological knowledge and gene expression data using pathway-guided random forests: a benchmarking study
por: Seifert, Stephan, et al.
Publicado: (2020) -
Distance Correlation-Based Feature Selection in Random Forest
por: Ratnasingam, Suthakaran, et al.
Publicado: (2023)