Cargando…
Improved Classification of Lung Cancer Tumors Based on Structural and Physicochemical Properties of Proteins Using Data Mining Models
Detecting divergence between oncogenic tumors plays a pivotal role in cancer diagnosis and therapy. This research work was focused on designing a computational strategy to predict the class of lung cancer tumors from the structural and physicochemical properties (1497 attributes) of protein sequence...
Autores principales: | Ramani, R. Geetha, Jacob, Shomona Gracia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591381/ https://www.ncbi.nlm.nih.gov/pubmed/23505559 http://dx.doi.org/10.1371/journal.pone.0058772 |
Ejemplares similares
-
Prediction of P53 Mutants (Multiple Sites) Transcriptional Activity Based on Structural (2D&3D) Properties
por: Geetha Ramani, R., et al.
Publicado: (2013) -
Classification of Lung Cancer Tumors Based on Structural and Physicochemical Properties of Proteins by Bioinformatics Models
por: Hosseinzadeh, Faezeh, et al.
Publicado: (2012) -
Correction: Classification of Lung Cancer Tumors Based on Structural and Physicochemical Properties of Proteins by Bioinformatics Models
por: Hosseinzadeh, Faezeh, et al.
Publicado: (2012) -
Improving classification in protein structure databases using text mining
por: Koussounadis, Antonis, et al.
Publicado: (2009) -
Feature Signature Discovery for Autism Detection: An Automated Machine Learning Based Feature Ranking Framework
por: Jacob, Shomona Gracia, et al.
Publicado: (2023)