Cargando…
Short-interval intracortical inhibition is not affected by varying visual feedback in an isometric task in biceps brachii muscle
Short-interval intracortical inhibition (SICI) of the primary motor cortex (M1) appears to play a significant role in skill acquisition. Consequently, it is of interest to find out which factors cause modulation of SICI. Purpose: To establish if visual feedback and force requirements influence SICI....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591786/ https://www.ncbi.nlm.nih.gov/pubmed/23483071 http://dx.doi.org/10.3389/fnhum.2013.00068 |
_version_ | 1782262095641837568 |
---|---|
author | Rantalainen, Timo Weier, Ashleigh Leung, Michael Brandner, Chris Spittle, Michael Kidgell, Dawson |
author_facet | Rantalainen, Timo Weier, Ashleigh Leung, Michael Brandner, Chris Spittle, Michael Kidgell, Dawson |
author_sort | Rantalainen, Timo |
collection | PubMed |
description | Short-interval intracortical inhibition (SICI) of the primary motor cortex (M1) appears to play a significant role in skill acquisition. Consequently, it is of interest to find out which factors cause modulation of SICI. Purpose: To establish if visual feedback and force requirements influence SICI. Methods: SICI was assessed from 10 healthy adults (5 males and 5 females aged between 21 and 35 years) in three submaximal isometric elbow flexion torque levels [5, 20, and 40% of maximal voluntary contraction (MVC)] and with two tasks differing in terms of visual feedback. Single-pulse and paired-pulse motor-evoked potentials (MEPs), supramaximal M-wave, and background surface electromyogram (sEMG) were recorded from the biceps brachii muscle. Results: Repeated measures MANOVA was used for statistical analyses. Background sEMG did not differ between tasks (F = 0.4, P = 0.68) nor was task × torque level interaction observed (F = 1.2, P = 0.32), whereas background sEMG increased with increasing torque levels (P = 0.001). SICI did not differ between tasks (F = 0.9, P = 0.43) and no task × torque level interaction was observed (F = 2.3, P = 0.08). However, less SICI was observed at 40% MVC compared to the 5 and 20% MVC torque levels (P = 0.01–0.001). Conclusion: SICI was not altered by performing the same task with differing visual feedback. However, SICI decreased with increasing submaximal torque providing further evidence that SICI is one mechanism of modulating cortical excitability and plays a role in force gradation. |
format | Online Article Text |
id | pubmed-3591786 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-35917862013-03-08 Short-interval intracortical inhibition is not affected by varying visual feedback in an isometric task in biceps brachii muscle Rantalainen, Timo Weier, Ashleigh Leung, Michael Brandner, Chris Spittle, Michael Kidgell, Dawson Front Hum Neurosci Neuroscience Short-interval intracortical inhibition (SICI) of the primary motor cortex (M1) appears to play a significant role in skill acquisition. Consequently, it is of interest to find out which factors cause modulation of SICI. Purpose: To establish if visual feedback and force requirements influence SICI. Methods: SICI was assessed from 10 healthy adults (5 males and 5 females aged between 21 and 35 years) in three submaximal isometric elbow flexion torque levels [5, 20, and 40% of maximal voluntary contraction (MVC)] and with two tasks differing in terms of visual feedback. Single-pulse and paired-pulse motor-evoked potentials (MEPs), supramaximal M-wave, and background surface electromyogram (sEMG) were recorded from the biceps brachii muscle. Results: Repeated measures MANOVA was used for statistical analyses. Background sEMG did not differ between tasks (F = 0.4, P = 0.68) nor was task × torque level interaction observed (F = 1.2, P = 0.32), whereas background sEMG increased with increasing torque levels (P = 0.001). SICI did not differ between tasks (F = 0.9, P = 0.43) and no task × torque level interaction was observed (F = 2.3, P = 0.08). However, less SICI was observed at 40% MVC compared to the 5 and 20% MVC torque levels (P = 0.01–0.001). Conclusion: SICI was not altered by performing the same task with differing visual feedback. However, SICI decreased with increasing submaximal torque providing further evidence that SICI is one mechanism of modulating cortical excitability and plays a role in force gradation. Frontiers Media S.A. 2013-03-08 /pmc/articles/PMC3591786/ /pubmed/23483071 http://dx.doi.org/10.3389/fnhum.2013.00068 Text en Copyright © 2013 Rantalainen, Weier, Leung, Brandner, Spittle and Kidgell. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
spellingShingle | Neuroscience Rantalainen, Timo Weier, Ashleigh Leung, Michael Brandner, Chris Spittle, Michael Kidgell, Dawson Short-interval intracortical inhibition is not affected by varying visual feedback in an isometric task in biceps brachii muscle |
title | Short-interval intracortical inhibition is not affected by varying visual feedback in an isometric task in biceps brachii muscle |
title_full | Short-interval intracortical inhibition is not affected by varying visual feedback in an isometric task in biceps brachii muscle |
title_fullStr | Short-interval intracortical inhibition is not affected by varying visual feedback in an isometric task in biceps brachii muscle |
title_full_unstemmed | Short-interval intracortical inhibition is not affected by varying visual feedback in an isometric task in biceps brachii muscle |
title_short | Short-interval intracortical inhibition is not affected by varying visual feedback in an isometric task in biceps brachii muscle |
title_sort | short-interval intracortical inhibition is not affected by varying visual feedback in an isometric task in biceps brachii muscle |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591786/ https://www.ncbi.nlm.nih.gov/pubmed/23483071 http://dx.doi.org/10.3389/fnhum.2013.00068 |
work_keys_str_mv | AT rantalainentimo shortintervalintracorticalinhibitionisnotaffectedbyvaryingvisualfeedbackinanisometrictaskinbicepsbrachiimuscle AT weierashleigh shortintervalintracorticalinhibitionisnotaffectedbyvaryingvisualfeedbackinanisometrictaskinbicepsbrachiimuscle AT leungmichael shortintervalintracorticalinhibitionisnotaffectedbyvaryingvisualfeedbackinanisometrictaskinbicepsbrachiimuscle AT brandnerchris shortintervalintracorticalinhibitionisnotaffectedbyvaryingvisualfeedbackinanisometrictaskinbicepsbrachiimuscle AT spittlemichael shortintervalintracorticalinhibitionisnotaffectedbyvaryingvisualfeedbackinanisometrictaskinbicepsbrachiimuscle AT kidgelldawson shortintervalintracorticalinhibitionisnotaffectedbyvaryingvisualfeedbackinanisometrictaskinbicepsbrachiimuscle |