Cargando…
Predicting missing expression values in gene regulatory networks using a discrete logic modeling optimization guided by network stable states
The development of new high-throughput technologies enables us to measure genome-wide transcription levels, protein abundance, metabolite concentration, etc. Nevertheless, these experimental data are often noisy and incomplete, which hinders data analysis, modeling and prediction. Here, we propose a...
Autores principales: | Crespo, Isaac, Krishna, Abhimanyu, Le Béchec, Antony, del Sol, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592407/ https://www.ncbi.nlm.nih.gov/pubmed/22941654 http://dx.doi.org/10.1093/nar/gks785 |
Ejemplares similares
-
Discrete Logic Modelling Optimization to Contextualize Prior Knowledge Networks Using PRUNET
por: Rodriguez, Ana, et al.
Publicado: (2015) -
Single-cell gene regulatory network prediction by explainable AI
por: Keyl, Philipp, et al.
Publicado: (2023) -
Using single cell atlas data to reconstruct regulatory networks
por: Song, Qi, et al.
Publicado: (2023) -
An integer linear programming approach for finding deregulated subgraphs in regulatory networks
por: Backes, Christina, et al.
Publicado: (2012) -
Reconstructing regulatory networks from the dynamic plasticity of gene expression by mutual information
por: Wang, Jianxin, et al.
Publicado: (2013)