Cargando…
Heterogeneous ensemble approach with discriminative features and modified-SMOTEbagging for pre-miRNA classification
An ensemble classifier approach for microRNA precursor (pre-miRNA) classification was proposed based upon combining a set of heterogeneous algorithms including support vector machine (SVM), k-nearest neighbors (kNN) and random forest (RF), then aggregating their prediction through a voting system. A...
Autores principales: | Lertampaiporn, Supatcha, Thammarongtham, Chinae, Nukoolkit, Chakarida, Kaewkamnerdpong, Boonserm, Ruengjitchatchawalya, Marasri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592496/ https://www.ncbi.nlm.nih.gov/pubmed/23012261 http://dx.doi.org/10.1093/nar/gks878 |
Ejemplares similares
-
Identification of non-coding RNAs with a new composite feature in the Hybrid Random Forest Ensemble algorithm
por: Lertampaiporn, Supatcha, et al.
Publicado: (2014) -
Ensemble of Multiple Classifiers for Multilabel Classification of Plant Protein Subcellular Localization
por: Wattanapornprom, Warin, et al.
Publicado: (2021) -
Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs
por: Lertampaiporn, Supatcha, et al.
Publicado: (2021) -
Ensemble-AHTPpred: A Robust Ensemble Machine Learning Model Integrated With a New Composite Feature for Identifying Antihypertensive Peptides
por: Lertampaiporn, Supatcha, et al.
Publicado: (2022) -
mSRFR: a machine learning model using microalgal signature features for ncRNA classification
por: Anuntakarun, Songtham, et al.
Publicado: (2022)