Cargando…
An Algorithm to Automate Yeast Segmentation and Tracking
Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, ce...
Autores principales: | Doncic, Andreas, Eser, Umut, Atay, Oguzhan, Skotheim, Jan M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592893/ https://www.ncbi.nlm.nih.gov/pubmed/23520484 http://dx.doi.org/10.1371/journal.pone.0057970 |
Ejemplares similares
-
A fully-automated, robust, and versatile algorithm for long-term budding yeast segmentation and tracking
por: Wood, N. Ezgi, et al.
Publicado: (2019) -
Modularity and predictability in cell signaling and decision making
por: Atay, Oguzhan, et al.
Publicado: (2014) -
Spatial and temporal signal processing and decision making by MAPK pathways
por: Atay, Oguzhan, et al.
Publicado: (2017) -
A graph-based cell tracking algorithm with few manually tunable parameters and automated segmentation error correction
por: Löffler, Katharina, et al.
Publicado: (2021) -
A regulatory circuit of two lncRNAs and a master regulator directs cell fate in yeast
por: Moretto, Fabien, et al.
Publicado: (2018)