Cargando…

A Modified Synthetic Pathway for the Synthesis of so far Inaccessible N1-Functionalized Tetrazole Ligands – Synthesis and Characterization of the 1D Chain-Type Spin Crossover Compound [Fe(3ditz)(3)](BF(4))(2)

A modified phase-transfer-catalyst-assisted synthetic pathway was developed that widens the pool of accessible 1-substituted tetrazoles, which are possible ligands for iron(II) spin-crossover compounds. Within the family of α,ω-bis(tetrazol-1-yl)alkanes, a series of ligands and their respective iron...

Descripción completa

Detalles Bibliográficos
Autores principales: Müller, Danny, Knoll, Christian, Stöger, Berthold, Artner, Werner, Reissner, Michael, Weinberger, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3593040/
https://www.ncbi.nlm.nih.gov/pubmed/23487581
http://dx.doi.org/10.1002/ejic.201201062
Descripción
Sumario:A modified phase-transfer-catalyst-assisted synthetic pathway was developed that widens the pool of accessible 1-substituted tetrazoles, which are possible ligands for iron(II) spin-crossover compounds. Within the family of α,ω-bis(tetrazol-1-yl)alkanes, a series of ligands and their respective iron(II) spin-crossover compounds were synthesized and structurally and spectroscopically characterized in the past. The classical route to prepare these ligands is based on the respective amino-precursors. Hence the pool of accessible compounds is limited by the commercial or synthetical availability of α,ω-diaminoalkanes. Furthermore, the concomitant transformation to the tetrazole moieties turns out to be easier for diamino-alkanes with an even number of carbon atoms than for those with an odd number. In line with this observation, the shortest odd-numbered homologues such as 1,1-bis(tetrazol-1-yl)methane (1ditz) and 1,3-bis(tetrazol-1-yl)propane (3ditz) were inaccessible so far. In this paper, we report the successful preparation and characterisation of the classically inaccessible 1,3-bis(tetrazol-1-yl)propane (3ditz) and of its spin-crossover complex [Fe(3ditz)(3)](BF(4))(2), which features an abrupt and almost complete spin transition at T[Image: see text] = 159 K. The single-crystal X-ray structure of the low-spin and the high-spin species is presented. The magnetic data are supported by variable-temperature IR, UV/Vis/NIR, and (57)Fe Mössbauer spectra.