Cargando…
Catalytic Nanoceria Are Preferentially Retained in the Rat Retina and Are Not Cytotoxic after Intravitreal Injection
Cerium oxide nanoparticles (nanoceria) possess catalytic and regenerative radical scavenging activities. The ability of nanoceria to maintain cellular redox balance makes them ideal candidates for treatment of retinal diseases whose development is tightly associated with oxidative damage. We have de...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594235/ https://www.ncbi.nlm.nih.gov/pubmed/23536794 http://dx.doi.org/10.1371/journal.pone.0058431 |
_version_ | 1782262310137495552 |
---|---|
author | Wong, Lily L. Hirst, Suzanne M. Pye, Quentin N. Reilly, Christopher M. Seal, Sudipta McGinnis, James F. |
author_facet | Wong, Lily L. Hirst, Suzanne M. Pye, Quentin N. Reilly, Christopher M. Seal, Sudipta McGinnis, James F. |
author_sort | Wong, Lily L. |
collection | PubMed |
description | Cerium oxide nanoparticles (nanoceria) possess catalytic and regenerative radical scavenging activities. The ability of nanoceria to maintain cellular redox balance makes them ideal candidates for treatment of retinal diseases whose development is tightly associated with oxidative damage. We have demonstrated that our stable water-dispersed nanoceria delay photoreceptor cell degeneration in rodent models and prevent pathological retinal neovascularization in vldlr mutant mice. The objectives of the current study were to determine the temporal and spatial distributions of nanoceria after a single intravitreal injection, and to determine if nanoceria had any toxic effects in healthy rat retinas. Using inductively-coupled plasma mass spectrometry (ICP-MS), we discovered that nanoceria were rapidly taken up by the retina and were preferentially retained in this tissue even after 120 days. We also did not observe any acute or long-term negative effects of nanoceria on retinal function or cytoarchitecture even after this long-term exposure. Because nanoceria are effective at low dosages, nontoxic and are retained in the retina for extended periods, we conclude that nanoceria are promising ophthalmic therapeutics for treating retinal diseases known to involve oxidative stress in their pathogeneses. |
format | Online Article Text |
id | pubmed-3594235 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35942352013-03-27 Catalytic Nanoceria Are Preferentially Retained in the Rat Retina and Are Not Cytotoxic after Intravitreal Injection Wong, Lily L. Hirst, Suzanne M. Pye, Quentin N. Reilly, Christopher M. Seal, Sudipta McGinnis, James F. PLoS One Research Article Cerium oxide nanoparticles (nanoceria) possess catalytic and regenerative radical scavenging activities. The ability of nanoceria to maintain cellular redox balance makes them ideal candidates for treatment of retinal diseases whose development is tightly associated with oxidative damage. We have demonstrated that our stable water-dispersed nanoceria delay photoreceptor cell degeneration in rodent models and prevent pathological retinal neovascularization in vldlr mutant mice. The objectives of the current study were to determine the temporal and spatial distributions of nanoceria after a single intravitreal injection, and to determine if nanoceria had any toxic effects in healthy rat retinas. Using inductively-coupled plasma mass spectrometry (ICP-MS), we discovered that nanoceria were rapidly taken up by the retina and were preferentially retained in this tissue even after 120 days. We also did not observe any acute or long-term negative effects of nanoceria on retinal function or cytoarchitecture even after this long-term exposure. Because nanoceria are effective at low dosages, nontoxic and are retained in the retina for extended periods, we conclude that nanoceria are promising ophthalmic therapeutics for treating retinal diseases known to involve oxidative stress in their pathogeneses. Public Library of Science 2013-03-11 /pmc/articles/PMC3594235/ /pubmed/23536794 http://dx.doi.org/10.1371/journal.pone.0058431 Text en © 2013 Wong et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wong, Lily L. Hirst, Suzanne M. Pye, Quentin N. Reilly, Christopher M. Seal, Sudipta McGinnis, James F. Catalytic Nanoceria Are Preferentially Retained in the Rat Retina and Are Not Cytotoxic after Intravitreal Injection |
title | Catalytic Nanoceria Are Preferentially Retained in the Rat Retina and Are Not Cytotoxic after Intravitreal Injection |
title_full | Catalytic Nanoceria Are Preferentially Retained in the Rat Retina and Are Not Cytotoxic after Intravitreal Injection |
title_fullStr | Catalytic Nanoceria Are Preferentially Retained in the Rat Retina and Are Not Cytotoxic after Intravitreal Injection |
title_full_unstemmed | Catalytic Nanoceria Are Preferentially Retained in the Rat Retina and Are Not Cytotoxic after Intravitreal Injection |
title_short | Catalytic Nanoceria Are Preferentially Retained in the Rat Retina and Are Not Cytotoxic after Intravitreal Injection |
title_sort | catalytic nanoceria are preferentially retained in the rat retina and are not cytotoxic after intravitreal injection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594235/ https://www.ncbi.nlm.nih.gov/pubmed/23536794 http://dx.doi.org/10.1371/journal.pone.0058431 |
work_keys_str_mv | AT wonglilyl catalyticnanoceriaarepreferentiallyretainedintheratretinaandarenotcytotoxicafterintravitrealinjection AT hirstsuzannem catalyticnanoceriaarepreferentiallyretainedintheratretinaandarenotcytotoxicafterintravitrealinjection AT pyequentinn catalyticnanoceriaarepreferentiallyretainedintheratretinaandarenotcytotoxicafterintravitrealinjection AT reillychristopherm catalyticnanoceriaarepreferentiallyretainedintheratretinaandarenotcytotoxicafterintravitrealinjection AT sealsudipta catalyticnanoceriaarepreferentiallyretainedintheratretinaandarenotcytotoxicafterintravitrealinjection AT mcginnisjamesf catalyticnanoceriaarepreferentiallyretainedintheratretinaandarenotcytotoxicafterintravitrealinjection |