Cargando…
Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography
Knowledge of myocardial fiber architecture is essential towards understanding heart functions. We demonstrated in this study a method to map cardiac muscle structure using the local optical axis obtained from polarization-sensitive optical coherence tomography (PSOCT). An algorithm was developed to...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595089/ https://www.ncbi.nlm.nih.gov/pubmed/23504508 http://dx.doi.org/10.1364/BOE.4.000460 |
Sumario: | Knowledge of myocardial fiber architecture is essential towards understanding heart functions. We demonstrated in this study a method to map cardiac muscle structure using the local optical axis obtained from polarization-sensitive optical coherence tomography (PSOCT). An algorithm was developed to extract the true local depth-resolved optical axis, retardance, and diattenuation from conventional round-trip results obtained in a Jones matrix-based PSOCT system. This method was applied to image the myocardial fiber orientation in a bovine heart muscle sample. |
---|