Cargando…

Recombinant adenovirus vector-mediated human MDA-7 gene transfection suppresses hepatocellular carcinoma growth in a mouse xenograft model()

Hepatocellular carcinoma is one of the most common tumors in the world. The purpose of the present study was to investigate the inhibitory effects of adenoviral transduction of human melanoma differentiation-associated gene-7 (MDA-7) gene on hepatocellular carcinoma, so as to provide a theoretical b...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Xinting, Wu, Liqun, Cao, Jingyu, Guo, Weidong, Wang, Zusen, Han, Bing, Hu, Weiyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Editorial Department of Journal of Biomedical Research 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596080/
https://www.ncbi.nlm.nih.gov/pubmed/23554730
http://dx.doi.org/10.1016/S1674-8301(12)60007-4
Descripción
Sumario:Hepatocellular carcinoma is one of the most common tumors in the world. The purpose of the present study was to investigate the inhibitory effects of adenoviral transduction of human melanoma differentiation-associated gene-7 (MDA-7) gene on hepatocellular carcinoma, so as to provide a theoretical basis for gene therapy of the disease. The human MDA-7 gene was cloned into replication-defective adenovirus specific to HepG2 cells using recombinant virus technology. RT-PCR and Western blotting assays were used to determine the expression of human MDA-7 mRNA and MDA-7 protein in HepG2 cells in vitro. Induction of apoptosis by overexpression of the human MDA-7 gene was determined by flow cytometry. In-vivo efficacy of adenoviral delivery of the human MDA-7 gene was assessed in nude mice bearing HepG2 cell lines in vivo by determining inhibition of tumor growth, VEGF and CD34 expression, and microvascular density (MVD). The results showed that AdGFP/MDA-7 induced apoptosis of HepG2 cells in vitro and significantly inhibited tumor growth in vivo (P < 0.05). The intratumoral MVD decreased significantly in the treated tumors (P < 0.05). We conclude the recombination adenovirus AdGFP/MDA-7 can effectively express biologically active human MDA-7, which leads to inhibition of hepatocellular carcinoma growth.