Cargando…

Towards 4-dimensional atomic force spectroscopy using the spectral inversion method

We introduce a novel and potentially powerful, yet relatively simple extension of the spectral inversion method, which offers the possibility of carrying out 4-dimensional (4D) atomic force spectroscopy. With the extended spectral inversion method it is theoretically possible to measure the tip–samp...

Descripción completa

Detalles Bibliográficos
Autores principales: Williams, Jeffrey C, Solares, Santiago D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596110/
https://www.ncbi.nlm.nih.gov/pubmed/23503061
http://dx.doi.org/10.3762/bjnano.4.10
Descripción
Sumario:We introduce a novel and potentially powerful, yet relatively simple extension of the spectral inversion method, which offers the possibility of carrying out 4-dimensional (4D) atomic force spectroscopy. With the extended spectral inversion method it is theoretically possible to measure the tip–sample forces as a function of the three Cartesian coordinates in the scanning volume (x, y and z) and the vertical velocity of the tip, through a single 2-dimensional (2D) surface scan. Although signal-to-noise ratio limitations can currently prevent the accurate experimental implementation of the 4D method, and the extraction of rate-dependent material properties from the force maps is a formidable challenge, the spectral inversion method is a promising approach due to its dynamic nature, robustness, relative simplicity and previous successes.