Cargando…

Endometrial Exosomes/Microvesicles in the Uterine Microenvironment: A New Paradigm for Embryo-Endometrial Cross Talk at Implantation

Exosomes are nanoparticles (∼100 nm diameter) released from cells, which can transfer small RNAs and mRNA via the extracellular environment to cells at distant sites. We hypothesised that exosomes or the slightly larger microvesicles (100–300 nm) are released from the endometrial epithelium into the...

Descripción completa

Detalles Bibliográficos
Autores principales: Ng, York Hunt, Rome, Sophie, Jalabert, Audrey, Forterre, Alexis, Singh, Harmeet, Hincks, Cassandra L., Salamonsen, Lois A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596344/
https://www.ncbi.nlm.nih.gov/pubmed/23516492
http://dx.doi.org/10.1371/journal.pone.0058502
_version_ 1782262497544241152
author Ng, York Hunt
Rome, Sophie
Jalabert, Audrey
Forterre, Alexis
Singh, Harmeet
Hincks, Cassandra L.
Salamonsen, Lois A.
author_facet Ng, York Hunt
Rome, Sophie
Jalabert, Audrey
Forterre, Alexis
Singh, Harmeet
Hincks, Cassandra L.
Salamonsen, Lois A.
author_sort Ng, York Hunt
collection PubMed
description Exosomes are nanoparticles (∼100 nm diameter) released from cells, which can transfer small RNAs and mRNA via the extracellular environment to cells at distant sites. We hypothesised that exosomes or the slightly larger microvesicles (100–300 nm) are released from the endometrial epithelium into the uterine cavity, and that these contain specific micro (mi)RNA that could be transferred to either the trophectodermal cells of the blastocyst or to endometrial epithelial cells, to promote implantation. The aim of this study was to specifically identify and characterise exosomes/microvesicles (mv) released from endometrial epithelial cells and to determine whether exosomes/mv are present in uterine fluid. Immunostaining demonstrated that the tetraspanins, CD9 and CD63 used as cell surface markers of exosomes are present on the apical surfaces of endometrial epithelial cells in tissue sections taken across the menstrual cycle: CD63 showed cyclical regulation. Exosome/mv pellets were prepared from culture medium of endometrial epithelial cell (ECC1 cells) and from uterine fluid and its associated mucus by sequential ultracentifugation. Exosomes/mv were positively identified in all preparations by FACS and immunofluorescence staining following exosome binding to beads. Size particle analysis confirmed the predominance of particles of 50–150 nm in each of these fluids. MiRNA analysis of the ECC1 cells and their exosomes/mv demonstrated sorting of miRNA into exosomes/mv: 13 of the 227 miRNA were specific to exosomes/mv, while a further 5 were not present in these. The most abundant miRNA in exosomes/mv were hsa-miR-200c, hsa-miR-17 and hsa-miR-106a. Bioinformatic analysis showed that the exosome/mv-specific miRNAs have potential targets in biological pathways highly relevant for embryo implantation. Thus exosomes/mv containing specific miRNA are present in the microenvironment in which embryo implantation occurs and may contribute to the endometrial-embryo cross talk essential for this process.
format Online
Article
Text
id pubmed-3596344
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35963442013-03-20 Endometrial Exosomes/Microvesicles in the Uterine Microenvironment: A New Paradigm for Embryo-Endometrial Cross Talk at Implantation Ng, York Hunt Rome, Sophie Jalabert, Audrey Forterre, Alexis Singh, Harmeet Hincks, Cassandra L. Salamonsen, Lois A. PLoS One Research Article Exosomes are nanoparticles (∼100 nm diameter) released from cells, which can transfer small RNAs and mRNA via the extracellular environment to cells at distant sites. We hypothesised that exosomes or the slightly larger microvesicles (100–300 nm) are released from the endometrial epithelium into the uterine cavity, and that these contain specific micro (mi)RNA that could be transferred to either the trophectodermal cells of the blastocyst or to endometrial epithelial cells, to promote implantation. The aim of this study was to specifically identify and characterise exosomes/microvesicles (mv) released from endometrial epithelial cells and to determine whether exosomes/mv are present in uterine fluid. Immunostaining demonstrated that the tetraspanins, CD9 and CD63 used as cell surface markers of exosomes are present on the apical surfaces of endometrial epithelial cells in tissue sections taken across the menstrual cycle: CD63 showed cyclical regulation. Exosome/mv pellets were prepared from culture medium of endometrial epithelial cell (ECC1 cells) and from uterine fluid and its associated mucus by sequential ultracentifugation. Exosomes/mv were positively identified in all preparations by FACS and immunofluorescence staining following exosome binding to beads. Size particle analysis confirmed the predominance of particles of 50–150 nm in each of these fluids. MiRNA analysis of the ECC1 cells and their exosomes/mv demonstrated sorting of miRNA into exosomes/mv: 13 of the 227 miRNA were specific to exosomes/mv, while a further 5 were not present in these. The most abundant miRNA in exosomes/mv were hsa-miR-200c, hsa-miR-17 and hsa-miR-106a. Bioinformatic analysis showed that the exosome/mv-specific miRNAs have potential targets in biological pathways highly relevant for embryo implantation. Thus exosomes/mv containing specific miRNA are present in the microenvironment in which embryo implantation occurs and may contribute to the endometrial-embryo cross talk essential for this process. Public Library of Science 2013-03-13 /pmc/articles/PMC3596344/ /pubmed/23516492 http://dx.doi.org/10.1371/journal.pone.0058502 Text en © 2013 Ng et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Ng, York Hunt
Rome, Sophie
Jalabert, Audrey
Forterre, Alexis
Singh, Harmeet
Hincks, Cassandra L.
Salamonsen, Lois A.
Endometrial Exosomes/Microvesicles in the Uterine Microenvironment: A New Paradigm for Embryo-Endometrial Cross Talk at Implantation
title Endometrial Exosomes/Microvesicles in the Uterine Microenvironment: A New Paradigm for Embryo-Endometrial Cross Talk at Implantation
title_full Endometrial Exosomes/Microvesicles in the Uterine Microenvironment: A New Paradigm for Embryo-Endometrial Cross Talk at Implantation
title_fullStr Endometrial Exosomes/Microvesicles in the Uterine Microenvironment: A New Paradigm for Embryo-Endometrial Cross Talk at Implantation
title_full_unstemmed Endometrial Exosomes/Microvesicles in the Uterine Microenvironment: A New Paradigm for Embryo-Endometrial Cross Talk at Implantation
title_short Endometrial Exosomes/Microvesicles in the Uterine Microenvironment: A New Paradigm for Embryo-Endometrial Cross Talk at Implantation
title_sort endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596344/
https://www.ncbi.nlm.nih.gov/pubmed/23516492
http://dx.doi.org/10.1371/journal.pone.0058502
work_keys_str_mv AT ngyorkhunt endometrialexosomesmicrovesiclesintheuterinemicroenvironmentanewparadigmforembryoendometrialcrosstalkatimplantation
AT romesophie endometrialexosomesmicrovesiclesintheuterinemicroenvironmentanewparadigmforembryoendometrialcrosstalkatimplantation
AT jalabertaudrey endometrialexosomesmicrovesiclesintheuterinemicroenvironmentanewparadigmforembryoendometrialcrosstalkatimplantation
AT forterrealexis endometrialexosomesmicrovesiclesintheuterinemicroenvironmentanewparadigmforembryoendometrialcrosstalkatimplantation
AT singhharmeet endometrialexosomesmicrovesiclesintheuterinemicroenvironmentanewparadigmforembryoendometrialcrosstalkatimplantation
AT hinckscassandral endometrialexosomesmicrovesiclesintheuterinemicroenvironmentanewparadigmforembryoendometrialcrosstalkatimplantation
AT salamonsenloisa endometrialexosomesmicrovesiclesintheuterinemicroenvironmentanewparadigmforembryoendometrialcrosstalkatimplantation