Cargando…

Ceramide from sphingomyelin hydrolysis differentially mediates mitogen-activated protein kinases (MAPKs) activation following cerebral ischemia in rat hippocampal CA1 subregion()

OBJECTIVE: To explore the role that ceramide plays in the activation of mitogen-activated protein kinases (MAPKs) during cerebral ischemia and reperfusion. METHODS: Rats were subjected to ischemia by the four-vessel occlusion (4-VO) method. The sphingomyelinase inhibitor TPCK was administered to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Xian, Liu, Chao, Qian, Min, Zhao, Zhenghong, Guo, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Editorial Department of Journal of Biomedical Research 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596547/
https://www.ncbi.nlm.nih.gov/pubmed/23554623
http://dx.doi.org/10.1016/S1674-8301(10)60021-8
Descripción
Sumario:OBJECTIVE: To explore the role that ceramide plays in the activation of mitogen-activated protein kinases (MAPKs) during cerebral ischemia and reperfusion. METHODS: Rats were subjected to ischemia by the four-vessel occlusion (4-VO) method. The sphingomyelinase inhibitor TPCK was administered to the CA1 subregion of the rat hippocampus before inducing ischemia. Western blot was used to examine the activity of extracellular-signal regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) using antibodies against ERK, JNK and diphosphorylated ERK and JNK. RESULTS: At 1h reperfusion post-ischemia, JNK reached its peak activity while ERK was undergoing a sharp inactivation (P < 0.05). The level of diphosphorylated JNK was significantly reduced but the sharp inactivation of ERK was visibly reversed (P < 0.05) by the sphingomyelinase inhibitor. CONCLUSION: The ceramide signaling pathway is up-regulated through sphingomyelin hydrolysis in brain ischemia, promoting JNK activation and suppressing ERK activation, culminating in the ischemic lesion.