Cargando…

Response surface optimization for xylanase with high volumetric productivity by indigenous alkali tolerant Aspergillus candidus under submerged cultivation

In this study, a novel isolate Aspergillus candidus was employed for xylanase production using low cost agro residues. A Box-Behnken design matrix was used to optimize the influential parameters like carbon source, nitrogen source and incubation temperature for maximum xylanase production. Under opt...

Descripción completa

Detalles Bibliográficos
Autores principales: Garai, Debabrata, Kumar, Vineet
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597133/
https://www.ncbi.nlm.nih.gov/pubmed/28324567
http://dx.doi.org/10.1007/s13205-012-0077-1
Descripción
Sumario:In this study, a novel isolate Aspergillus candidus was employed for xylanase production using low cost agro residues. A Box-Behnken design matrix was used to optimize the influential parameters like carbon source, nitrogen source and incubation temperature for maximum xylanase production. Under optimized condition, enzyme titer level enhanced to 69 IU/ml at 48 h with volumetric productivity 1437 IU/l h. Growth and enzyme production were observed even at pH 11.0, indicating its ability to sustain at high alkaline environment. Little amount of cellulase was produced concomitantly with xylanase during the course of the process. Volumetric productivity of xylanase was found as a function of temperature. This fungal strain was emerged as a one among few strains having high xylanase productivity.