Cargando…
Analysis of the Proteinaceous Components of the Organic Matrix of Calcitic Sclerites from the Soft Coral Sinularia sp.
An organic matrix consisting of a protein-polysaccharide complex is generally accepted as an important medium for the calcification process. While the role this “calcified organic matrix” plays in the calcification process has long been appreciated, the complex mixture of proteins that is induced an...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597568/ https://www.ncbi.nlm.nih.gov/pubmed/23527022 http://dx.doi.org/10.1371/journal.pone.0058781 |
_version_ | 1782262651153285120 |
---|---|
author | Rahman, M. Azizur Shinjo, Ryuichi Oomori, Tamotsu Wörheide, Gert |
author_facet | Rahman, M. Azizur Shinjo, Ryuichi Oomori, Tamotsu Wörheide, Gert |
author_sort | Rahman, M. Azizur |
collection | PubMed |
description | An organic matrix consisting of a protein-polysaccharide complex is generally accepted as an important medium for the calcification process. While the role this “calcified organic matrix” plays in the calcification process has long been appreciated, the complex mixture of proteins that is induced and assembled during the mineral phase of calcification remains uncharacterized in many organisms. Thus, we investigated organic matrices from the calcitic sclerites of a soft coral, Sinularia sp., and used a proteomic approach to identify the functional matrix proteins that might be involved in the biocalcification process. We purified eight organic matrix proteins and performed in-gel digestion using trypsin. The tryptic peptides were separated by nano-liquid chromatography (nano-LC) and analyzed by tandem mass spectrometry (MS/MS) using a matrix-assisted laser desorption/ionization (MALDI) – time-of-flight-time-of-flight (TOF-TOF) mass spectrometer. Periodic acid Schiff staining of an SDS-PAGE gel indicated that four proteins were glycosylated. We identified several proteins, including a form of actin, from which we identified a total of 183 potential peptides. Our findings suggest that many of those peptides may contribute to biocalcification in soft corals. |
format | Online Article Text |
id | pubmed-3597568 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35975682013-03-22 Analysis of the Proteinaceous Components of the Organic Matrix of Calcitic Sclerites from the Soft Coral Sinularia sp. Rahman, M. Azizur Shinjo, Ryuichi Oomori, Tamotsu Wörheide, Gert PLoS One Research Article An organic matrix consisting of a protein-polysaccharide complex is generally accepted as an important medium for the calcification process. While the role this “calcified organic matrix” plays in the calcification process has long been appreciated, the complex mixture of proteins that is induced and assembled during the mineral phase of calcification remains uncharacterized in many organisms. Thus, we investigated organic matrices from the calcitic sclerites of a soft coral, Sinularia sp., and used a proteomic approach to identify the functional matrix proteins that might be involved in the biocalcification process. We purified eight organic matrix proteins and performed in-gel digestion using trypsin. The tryptic peptides were separated by nano-liquid chromatography (nano-LC) and analyzed by tandem mass spectrometry (MS/MS) using a matrix-assisted laser desorption/ionization (MALDI) – time-of-flight-time-of-flight (TOF-TOF) mass spectrometer. Periodic acid Schiff staining of an SDS-PAGE gel indicated that four proteins were glycosylated. We identified several proteins, including a form of actin, from which we identified a total of 183 potential peptides. Our findings suggest that many of those peptides may contribute to biocalcification in soft corals. Public Library of Science 2013-03-14 /pmc/articles/PMC3597568/ /pubmed/23527022 http://dx.doi.org/10.1371/journal.pone.0058781 Text en © 2013 Rahman et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Rahman, M. Azizur Shinjo, Ryuichi Oomori, Tamotsu Wörheide, Gert Analysis of the Proteinaceous Components of the Organic Matrix of Calcitic Sclerites from the Soft Coral Sinularia sp. |
title | Analysis of the Proteinaceous Components of the Organic Matrix of Calcitic Sclerites from the Soft Coral Sinularia sp.
|
title_full | Analysis of the Proteinaceous Components of the Organic Matrix of Calcitic Sclerites from the Soft Coral Sinularia sp.
|
title_fullStr | Analysis of the Proteinaceous Components of the Organic Matrix of Calcitic Sclerites from the Soft Coral Sinularia sp.
|
title_full_unstemmed | Analysis of the Proteinaceous Components of the Organic Matrix of Calcitic Sclerites from the Soft Coral Sinularia sp.
|
title_short | Analysis of the Proteinaceous Components of the Organic Matrix of Calcitic Sclerites from the Soft Coral Sinularia sp.
|
title_sort | analysis of the proteinaceous components of the organic matrix of calcitic sclerites from the soft coral sinularia sp. |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597568/ https://www.ncbi.nlm.nih.gov/pubmed/23527022 http://dx.doi.org/10.1371/journal.pone.0058781 |
work_keys_str_mv | AT rahmanmazizur analysisoftheproteinaceouscomponentsoftheorganicmatrixofcalciticscleritesfromthesoftcoralsinulariasp AT shinjoryuichi analysisoftheproteinaceouscomponentsoftheorganicmatrixofcalciticscleritesfromthesoftcoralsinulariasp AT oomoritamotsu analysisoftheproteinaceouscomponentsoftheorganicmatrixofcalciticscleritesfromthesoftcoralsinulariasp AT worheidegert analysisoftheproteinaceouscomponentsoftheorganicmatrixofcalciticscleritesfromthesoftcoralsinulariasp |