Cargando…
Neurokinin-1 Receptor Signalling Impacts Bone Marrow Repopulation Efficiency
Tachykinins are a large group of neuropeptides with both central and peripheral activity. Despite the increasing number of studies reporting a growth supportive effect of tachykinin peptides in various in vitro stem cell systems, it remains unclear whether these findings are applicable in vivo. To d...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597582/ https://www.ncbi.nlm.nih.gov/pubmed/23516556 http://dx.doi.org/10.1371/journal.pone.0058787 |
Sumario: | Tachykinins are a large group of neuropeptides with both central and peripheral activity. Despite the increasing number of studies reporting a growth supportive effect of tachykinin peptides in various in vitro stem cell systems, it remains unclear whether these findings are applicable in vivo. To determine how neurokinin-1 receptor (NK-1R) deficient hematopoietic stem cells would behave in a normal in vivo environment, we tested their reconstitution efficiency using competitive bone marrow repopulation assays. We show here that bone marrow taken from NK-1R deficient mice (Tacr1(−/−)) showed lineage specific B and T cell engraftment deficits compared to wild-type competitor bone marrow cells, providing evidence for an involvement of NK-1R signalling in adult hematopoiesis. Tachykinin knockout mice lacking the peptides SP and/or HK-1 (Tac1 (−/−), Tac4 (−/−) and Tac1 (−/−)/Tac4 (−/−) mice) repopulated a lethally irradiated wild-type host with similar efficiency as competing wild-type bone marrow. The difference between peptide and receptor deficient mice indicates a paracrine and/or endocrine mechanism of action rather than autocrine signalling, as tachykinin peptides are supplied by the host environment. |
---|