Cargando…

A Spinal Cord Window Chamber Model for In Vivo Longitudinal Multimodal Optical and Acoustic Imaging in a Murine Model

In vivo and direct imaging of the murine spinal cord and its vasculature using multimodal (optical and acoustic) imaging techniques could significantly advance preclinical studies of the spinal cord. Such intrinsically high resolution and complementary imaging technologies could provide a powerful m...

Descripción completa

Detalles Bibliográficos
Autores principales: Figley, Sarah A., Chen, Yonghong, Maeda, Azusa, Conroy, Leigh, McMullen, Jesse D., Silver, Jason I., Stapleton, Shawn, Vitkin, Alex, Lindsay, Patricia, Burrell, Kelly, Zadeh, Gelareh, Fehlings, Michael G., DaCosta, Ralph S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597636/
https://www.ncbi.nlm.nih.gov/pubmed/23516432
http://dx.doi.org/10.1371/journal.pone.0058081
_version_ 1782262664935768064
author Figley, Sarah A.
Chen, Yonghong
Maeda, Azusa
Conroy, Leigh
McMullen, Jesse D.
Silver, Jason I.
Stapleton, Shawn
Vitkin, Alex
Lindsay, Patricia
Burrell, Kelly
Zadeh, Gelareh
Fehlings, Michael G.
DaCosta, Ralph S.
author_facet Figley, Sarah A.
Chen, Yonghong
Maeda, Azusa
Conroy, Leigh
McMullen, Jesse D.
Silver, Jason I.
Stapleton, Shawn
Vitkin, Alex
Lindsay, Patricia
Burrell, Kelly
Zadeh, Gelareh
Fehlings, Michael G.
DaCosta, Ralph S.
author_sort Figley, Sarah A.
collection PubMed
description In vivo and direct imaging of the murine spinal cord and its vasculature using multimodal (optical and acoustic) imaging techniques could significantly advance preclinical studies of the spinal cord. Such intrinsically high resolution and complementary imaging technologies could provide a powerful means of quantitatively monitoring changes in anatomy, structure, physiology and function of the living cord over time after traumatic injury, onset of disease, or therapeutic intervention. However, longitudinal in vivo imaging of the intact spinal cord in rodent models has been challenging, requiring repeated surgeries to expose the cord for imaging or sacrifice of animals at various time points for ex vivo tissue analysis. To address these limitations, we have developed an implantable spinal cord window chamber (SCWC) device and procedures in mice for repeated multimodal intravital microscopic imaging of the cord and its vasculature in situ. We present methodology for using our SCWC to achieve spatially co-registered optical-acoustic imaging performed serially for up to four weeks, without damaging the cord or induction of locomotor deficits in implanted animals. To demonstrate the feasibility, we used the SCWC model to study the response of the normal spinal cord vasculature to ionizing radiation over time using white light and fluorescence microscopy combined with optical coherence tomography (OCT) in vivo. In vivo power Doppler ultrasound and photoacoustics were used to directly visualize the cord and vascular structures and to measure hemoglobin oxygen saturation through the complete spinal cord, respectively. The model was also used for intravital imaging of spinal micrometastases resulting from primary brain tumor using fluorescence and bioluminescence imaging. Our SCWC model overcomes previous in vivo imaging challenges, and our data provide evidence of the broader utility of hybridized optical-acoustic imaging methods for obtaining multiparametric and rich imaging data sets, including over extended periods, for preclinical in vivo spinal cord research.
format Online
Article
Text
id pubmed-3597636
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35976362013-03-20 A Spinal Cord Window Chamber Model for In Vivo Longitudinal Multimodal Optical and Acoustic Imaging in a Murine Model Figley, Sarah A. Chen, Yonghong Maeda, Azusa Conroy, Leigh McMullen, Jesse D. Silver, Jason I. Stapleton, Shawn Vitkin, Alex Lindsay, Patricia Burrell, Kelly Zadeh, Gelareh Fehlings, Michael G. DaCosta, Ralph S. PLoS One Research Article In vivo and direct imaging of the murine spinal cord and its vasculature using multimodal (optical and acoustic) imaging techniques could significantly advance preclinical studies of the spinal cord. Such intrinsically high resolution and complementary imaging technologies could provide a powerful means of quantitatively monitoring changes in anatomy, structure, physiology and function of the living cord over time after traumatic injury, onset of disease, or therapeutic intervention. However, longitudinal in vivo imaging of the intact spinal cord in rodent models has been challenging, requiring repeated surgeries to expose the cord for imaging or sacrifice of animals at various time points for ex vivo tissue analysis. To address these limitations, we have developed an implantable spinal cord window chamber (SCWC) device and procedures in mice for repeated multimodal intravital microscopic imaging of the cord and its vasculature in situ. We present methodology for using our SCWC to achieve spatially co-registered optical-acoustic imaging performed serially for up to four weeks, without damaging the cord or induction of locomotor deficits in implanted animals. To demonstrate the feasibility, we used the SCWC model to study the response of the normal spinal cord vasculature to ionizing radiation over time using white light and fluorescence microscopy combined with optical coherence tomography (OCT) in vivo. In vivo power Doppler ultrasound and photoacoustics were used to directly visualize the cord and vascular structures and to measure hemoglobin oxygen saturation through the complete spinal cord, respectively. The model was also used for intravital imaging of spinal micrometastases resulting from primary brain tumor using fluorescence and bioluminescence imaging. Our SCWC model overcomes previous in vivo imaging challenges, and our data provide evidence of the broader utility of hybridized optical-acoustic imaging methods for obtaining multiparametric and rich imaging data sets, including over extended periods, for preclinical in vivo spinal cord research. Public Library of Science 2013-03-14 /pmc/articles/PMC3597636/ /pubmed/23516432 http://dx.doi.org/10.1371/journal.pone.0058081 Text en © 2013 Figley et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Figley, Sarah A.
Chen, Yonghong
Maeda, Azusa
Conroy, Leigh
McMullen, Jesse D.
Silver, Jason I.
Stapleton, Shawn
Vitkin, Alex
Lindsay, Patricia
Burrell, Kelly
Zadeh, Gelareh
Fehlings, Michael G.
DaCosta, Ralph S.
A Spinal Cord Window Chamber Model for In Vivo Longitudinal Multimodal Optical and Acoustic Imaging in a Murine Model
title A Spinal Cord Window Chamber Model for In Vivo Longitudinal Multimodal Optical and Acoustic Imaging in a Murine Model
title_full A Spinal Cord Window Chamber Model for In Vivo Longitudinal Multimodal Optical and Acoustic Imaging in a Murine Model
title_fullStr A Spinal Cord Window Chamber Model for In Vivo Longitudinal Multimodal Optical and Acoustic Imaging in a Murine Model
title_full_unstemmed A Spinal Cord Window Chamber Model for In Vivo Longitudinal Multimodal Optical and Acoustic Imaging in a Murine Model
title_short A Spinal Cord Window Chamber Model for In Vivo Longitudinal Multimodal Optical and Acoustic Imaging in a Murine Model
title_sort spinal cord window chamber model for in vivo longitudinal multimodal optical and acoustic imaging in a murine model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597636/
https://www.ncbi.nlm.nih.gov/pubmed/23516432
http://dx.doi.org/10.1371/journal.pone.0058081
work_keys_str_mv AT figleysaraha aspinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT chenyonghong aspinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT maedaazusa aspinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT conroyleigh aspinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT mcmullenjessed aspinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT silverjasoni aspinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT stapletonshawn aspinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT vitkinalex aspinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT lindsaypatricia aspinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT burrellkelly aspinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT zadehgelareh aspinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT fehlingsmichaelg aspinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT dacostaralphs aspinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT figleysaraha spinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT chenyonghong spinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT maedaazusa spinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT conroyleigh spinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT mcmullenjessed spinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT silverjasoni spinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT stapletonshawn spinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT vitkinalex spinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT lindsaypatricia spinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT burrellkelly spinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT zadehgelareh spinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT fehlingsmichaelg spinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel
AT dacostaralphs spinalcordwindowchambermodelforinvivolongitudinalmultimodalopticalandacousticimaginginamurinemodel