Cargando…

Molecular paleontology: a biochemical model of the ancestral ribosome

Ancient components of the ribosome, inferred from a consensus of previous work, were constructed in silico, in vitro and in vivo. The resulting model of the ancestral ribosome presented here incorporates ∼20% of the extant 23S rRNA and fragments of five ribosomal proteins. We test hypotheses that an...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsiao, Chiaolong, Lenz, Timothy K., Peters, Jessica K., Fang, Po-Yu, Schneider, Dana M., Anderson, Eric J., Preeprem, Thanawadee, Bowman, Jessica C., O'Neill, Eric B., Lie, Lively, Athavale, Shreyas S., Gossett, J. Jared, Trippe, Catherine, Murray, Jason, Petrov, Anton S., Wartell, Roger M., Harvey, Stephen C., Hud, Nicholas V., Dean Williams, Loren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
RNA
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597689/
https://www.ncbi.nlm.nih.gov/pubmed/23355613
http://dx.doi.org/10.1093/nar/gkt023
_version_ 1782262677025849344
author Hsiao, Chiaolong
Lenz, Timothy K.
Peters, Jessica K.
Fang, Po-Yu
Schneider, Dana M.
Anderson, Eric J.
Preeprem, Thanawadee
Bowman, Jessica C.
O'Neill, Eric B.
Lie, Lively
Athavale, Shreyas S.
Gossett, J. Jared
Trippe, Catherine
Murray, Jason
Petrov, Anton S.
Wartell, Roger M.
Harvey, Stephen C.
Hud, Nicholas V.
Dean Williams, Loren
author_facet Hsiao, Chiaolong
Lenz, Timothy K.
Peters, Jessica K.
Fang, Po-Yu
Schneider, Dana M.
Anderson, Eric J.
Preeprem, Thanawadee
Bowman, Jessica C.
O'Neill, Eric B.
Lie, Lively
Athavale, Shreyas S.
Gossett, J. Jared
Trippe, Catherine
Murray, Jason
Petrov, Anton S.
Wartell, Roger M.
Harvey, Stephen C.
Hud, Nicholas V.
Dean Williams, Loren
author_sort Hsiao, Chiaolong
collection PubMed
description Ancient components of the ribosome, inferred from a consensus of previous work, were constructed in silico, in vitro and in vivo. The resulting model of the ancestral ribosome presented here incorporates ∼20% of the extant 23S rRNA and fragments of five ribosomal proteins. We test hypotheses that ancestral rRNA can: (i) assume canonical 23S rRNA-like secondary structure, (ii) assume canonical tertiary structure and (iii) form native complexes with ribosomal protein fragments. Footprinting experiments support formation of predicted secondary and tertiary structure. Gel shift, spectroscopic and yeast three-hybrid assays show specific interactions between ancestral rRNA and ribosomal protein fragments, independent of other, more recent, components of the ribosome. This robustness suggests that the catalytic core of the ribosome is an ancient construct that has survived billions of years of evolution without major changes in structure. Collectively, the data here support a model in which ancestors of the large and small subunits originated and evolved independently of each other, with autonomous functionalities.
format Online
Article
Text
id pubmed-3597689
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-35976892013-03-15 Molecular paleontology: a biochemical model of the ancestral ribosome Hsiao, Chiaolong Lenz, Timothy K. Peters, Jessica K. Fang, Po-Yu Schneider, Dana M. Anderson, Eric J. Preeprem, Thanawadee Bowman, Jessica C. O'Neill, Eric B. Lie, Lively Athavale, Shreyas S. Gossett, J. Jared Trippe, Catherine Murray, Jason Petrov, Anton S. Wartell, Roger M. Harvey, Stephen C. Hud, Nicholas V. Dean Williams, Loren Nucleic Acids Res RNA Ancient components of the ribosome, inferred from a consensus of previous work, were constructed in silico, in vitro and in vivo. The resulting model of the ancestral ribosome presented here incorporates ∼20% of the extant 23S rRNA and fragments of five ribosomal proteins. We test hypotheses that ancestral rRNA can: (i) assume canonical 23S rRNA-like secondary structure, (ii) assume canonical tertiary structure and (iii) form native complexes with ribosomal protein fragments. Footprinting experiments support formation of predicted secondary and tertiary structure. Gel shift, spectroscopic and yeast three-hybrid assays show specific interactions between ancestral rRNA and ribosomal protein fragments, independent of other, more recent, components of the ribosome. This robustness suggests that the catalytic core of the ribosome is an ancient construct that has survived billions of years of evolution without major changes in structure. Collectively, the data here support a model in which ancestors of the large and small subunits originated and evolved independently of each other, with autonomous functionalities. Oxford University Press 2013-03 2013-01-25 /pmc/articles/PMC3597689/ /pubmed/23355613 http://dx.doi.org/10.1093/nar/gkt023 Text en © The Author(s) 2013. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle RNA
Hsiao, Chiaolong
Lenz, Timothy K.
Peters, Jessica K.
Fang, Po-Yu
Schneider, Dana M.
Anderson, Eric J.
Preeprem, Thanawadee
Bowman, Jessica C.
O'Neill, Eric B.
Lie, Lively
Athavale, Shreyas S.
Gossett, J. Jared
Trippe, Catherine
Murray, Jason
Petrov, Anton S.
Wartell, Roger M.
Harvey, Stephen C.
Hud, Nicholas V.
Dean Williams, Loren
Molecular paleontology: a biochemical model of the ancestral ribosome
title Molecular paleontology: a biochemical model of the ancestral ribosome
title_full Molecular paleontology: a biochemical model of the ancestral ribosome
title_fullStr Molecular paleontology: a biochemical model of the ancestral ribosome
title_full_unstemmed Molecular paleontology: a biochemical model of the ancestral ribosome
title_short Molecular paleontology: a biochemical model of the ancestral ribosome
title_sort molecular paleontology: a biochemical model of the ancestral ribosome
topic RNA
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597689/
https://www.ncbi.nlm.nih.gov/pubmed/23355613
http://dx.doi.org/10.1093/nar/gkt023
work_keys_str_mv AT hsiaochiaolong molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT lenztimothyk molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT petersjessicak molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT fangpoyu molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT schneiderdanam molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT andersonericj molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT preepremthanawadee molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT bowmanjessicac molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT oneillericb molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT lielively molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT athavaleshreyass molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT gossettjjared molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT trippecatherine molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT murrayjason molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT petrovantons molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT wartellrogerm molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT harveystephenc molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT hudnicholasv molecularpaleontologyabiochemicalmodeloftheancestralribosome
AT deanwilliamsloren molecularpaleontologyabiochemicalmodeloftheancestralribosome