Cargando…

Evolutionary history of the TBP-domain superfamily

The TATA binding protein (TBP) is an essential transcription initiation factor in Archaea and Eucarya. Bacteria lack TBP, and instead use sigma factors for transcription initiation. TBP has a symmetric structure comprising two repeated TBP domains. Using sequence, structural and phylogenetic analyse...

Descripción completa

Detalles Bibliográficos
Autores principales: Brindefalk, Björn, Dessailly, Benoit H., Yeats, Corin, Orengo, Christine, Werner, Finn, Poole, Anthony M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597702/
https://www.ncbi.nlm.nih.gov/pubmed/23376926
http://dx.doi.org/10.1093/nar/gkt045
Descripción
Sumario:The TATA binding protein (TBP) is an essential transcription initiation factor in Archaea and Eucarya. Bacteria lack TBP, and instead use sigma factors for transcription initiation. TBP has a symmetric structure comprising two repeated TBP domains. Using sequence, structural and phylogenetic analyses, we examine the distribution and evolutionary history of the TBP domain, a member of the helix-grip fold family. Our analyses reveal a broader distribution than for TBP, with TBP-domains being present across all three domains of life. In contrast to TBP, all other characterized examples of the TBP domain are present as single copies, primarily within multidomain proteins. The presence of the TBP domain in the ubiquitous DNA glycosylases suggests that this fold traces back to the ancestor of all three domains of life. The TBP domain is also found in RNase HIII, and phylogenetic analyses show that RNase HIII has evolved from bacterial RNase HII via TBP-domain fusion. Finally, our comparative genomic screens confirm and extend earlier reports of proteins consisting of a single TBP domain among some Archaea. These monopartite TBP-domain proteins suggest that this domain is functional in its own right, and that the TBP domain could have first evolved as an independent protein, which was later recruited in different contexts.