Cargando…
Functional annotation and ENU
Functional annotation of every gene in the mouse genome is a herculean task that requires a multifaceted approach. Many large-scale initiatives are contributing to this undertaking. The International Knockout Mouse Consortium (IKMC) plans to mutate every protein-coding gene, using a combination of g...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598525/ https://www.ncbi.nlm.nih.gov/pubmed/23095518 http://dx.doi.org/10.1186/1756-0500-5-580 |
Sumario: | Functional annotation of every gene in the mouse genome is a herculean task that requires a multifaceted approach. Many large-scale initiatives are contributing to this undertaking. The International Knockout Mouse Consortium (IKMC) plans to mutate every protein-coding gene, using a combination of gene trapping and gene targeting in embryonic stem cells. Many other groups are performing using the chemical mutagen ethylnitrosourea (ENU) or transpon-based systems to induce mutations, screening offspring for phenovariants and identifying the causative mutations. A recent paper in BMC Research Notes by Arnold et al. presents data from an ENU-based mutagenesis project that provides not only some of the first phenotype-genotype information for a large number of genes, but also a trove of information, all publicly available, that demonstrates the specificity and efficiency of ENU mutagenesis. |
---|