Cargando…
Biclustering reveals breast cancer tumour subgroups with common clinical features and improves prediction of disease recurrence
BACKGROUND: Many studies have revealed correlations between breast tumour phenotypes, variations in gene expression, and patient survival outcomes. The molecular heterogeneity between breast tumours revealed by these studies has allowed prediction of prognosis and has underpinned stratified therapy,...
Autores principales: | Wang, Yi Kan, Print, Cristin G, Crampin, Edmund J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598775/ https://www.ncbi.nlm.nih.gov/pubmed/23405961 http://dx.doi.org/10.1186/1471-2164-14-102 |
Ejemplares similares
-
Identifying gene-specific subgroups: an alternative to biclustering
por: Branders, Vincent, et al.
Publicado: (2019) -
A Composite Model for Subgroup Identification and Prediction via Bicluster Analysis
por: Chen, Hung-Chia, et al.
Publicado: (2014) -
Integration of Steady-State and Temporal Gene Expression Data for the Inference of Gene Regulatory Networks
por: Wang, Yi Kan, et al.
Publicado: (2013) -
A Bayesian Search for Transcriptional Motifs
por: Miller, Andrew K., et al.
Publicado: (2010) -
Differential co-expression framework to quantify goodness of biclusters and compare biclustering algorithms
por: Chia, Burton Kuan Hui, et al.
Publicado: (2010)