Cargando…

High level production of tyrosinase in recombinant Escherichia coli

BACKGROUND: Tyrosinase is a bifunctional enzyme that catalyzes both the hydroxylation of monophenols to o-diphenols (monophenolase activity) and the subsequent oxidation of the diphenols to o-quinones (diphenolase activity). Due to the potential applications of tyrosinase in biotechnology, in partic...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Qun, Henes, Bernhard, Fairhead, Michael, Thöny-Meyer, Linda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598836/
https://www.ncbi.nlm.nih.gov/pubmed/23442796
http://dx.doi.org/10.1186/1472-6750-13-18
_version_ 1782262831792521216
author Ren, Qun
Henes, Bernhard
Fairhead, Michael
Thöny-Meyer, Linda
author_facet Ren, Qun
Henes, Bernhard
Fairhead, Michael
Thöny-Meyer, Linda
author_sort Ren, Qun
collection PubMed
description BACKGROUND: Tyrosinase is a bifunctional enzyme that catalyzes both the hydroxylation of monophenols to o-diphenols (monophenolase activity) and the subsequent oxidation of the diphenols to o-quinones (diphenolase activity). Due to the potential applications of tyrosinase in biotechnology, in particular in biocatalysis and for biosensors, it is desirable to develop a suitable low-cost process for efficient production of this enzyme. So far, the best production yield reported for tyrosinase was about 1 g L(-1), which was achieved by cultivating the filamentous fungus Trichoderma reesei for 6 days. RESULTS: In this work, tyrosinase from Verrucomicrobium spinosum was expressed in Escherichia coli and its production was studied in both batch and fed-batch cultivations. Effects of various key cultivation parameters on tyrosinase production were first examined in batch cultures to identify optimal conditions. It was found that a culture temperature of 32 °C and induction at the late growth stage were favorable, leading to a highest tyrosinase activity of 0.76 U mL(-1). The fed-batch process was performed by using an exponential feeding strategy to achieve high cell density. With the fed-batch process, a final biomass concentration of 37 g L(-1) (based on optical density) and a tyrosinase activity of 13 U mL(-1) were obtained in 28 hours, leading to a yield of active tyrosinase of about 3 g L(-1). The highest overall volumetric productivity of 103 mg of active tyrosinase per liter and hour (corresponding to 464 mU L(-1) h(-1)) was determined, which is approximately 15 times higher than that obtained in batch cultures. CONCLUSIONS: We have successfully expressed and produced gram quantities per liter of active tyrosinase in recombinant E. coli by optimizing the expression conditions and fed-batch cultivation strategy. Exponential feed of substrate helped to prolong the exponential phase of growth, to reduce the fermentation time and thus the cost. A specific tyrosinase production rate of 103 mg L(−1) h(−1) and a maximum volumetric activity of 464 mU L(−1) h(-1) were achieved in this study. These levels have not been reported previously.
format Online
Article
Text
id pubmed-3598836
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35988362013-03-16 High level production of tyrosinase in recombinant Escherichia coli Ren, Qun Henes, Bernhard Fairhead, Michael Thöny-Meyer, Linda BMC Biotechnol Research Article BACKGROUND: Tyrosinase is a bifunctional enzyme that catalyzes both the hydroxylation of monophenols to o-diphenols (monophenolase activity) and the subsequent oxidation of the diphenols to o-quinones (diphenolase activity). Due to the potential applications of tyrosinase in biotechnology, in particular in biocatalysis and for biosensors, it is desirable to develop a suitable low-cost process for efficient production of this enzyme. So far, the best production yield reported for tyrosinase was about 1 g L(-1), which was achieved by cultivating the filamentous fungus Trichoderma reesei for 6 days. RESULTS: In this work, tyrosinase from Verrucomicrobium spinosum was expressed in Escherichia coli and its production was studied in both batch and fed-batch cultivations. Effects of various key cultivation parameters on tyrosinase production were first examined in batch cultures to identify optimal conditions. It was found that a culture temperature of 32 °C and induction at the late growth stage were favorable, leading to a highest tyrosinase activity of 0.76 U mL(-1). The fed-batch process was performed by using an exponential feeding strategy to achieve high cell density. With the fed-batch process, a final biomass concentration of 37 g L(-1) (based on optical density) and a tyrosinase activity of 13 U mL(-1) were obtained in 28 hours, leading to a yield of active tyrosinase of about 3 g L(-1). The highest overall volumetric productivity of 103 mg of active tyrosinase per liter and hour (corresponding to 464 mU L(-1) h(-1)) was determined, which is approximately 15 times higher than that obtained in batch cultures. CONCLUSIONS: We have successfully expressed and produced gram quantities per liter of active tyrosinase in recombinant E. coli by optimizing the expression conditions and fed-batch cultivation strategy. Exponential feed of substrate helped to prolong the exponential phase of growth, to reduce the fermentation time and thus the cost. A specific tyrosinase production rate of 103 mg L(−1) h(−1) and a maximum volumetric activity of 464 mU L(−1) h(-1) were achieved in this study. These levels have not been reported previously. BioMed Central 2013-02-27 /pmc/articles/PMC3598836/ /pubmed/23442796 http://dx.doi.org/10.1186/1472-6750-13-18 Text en Copyright ©2013 Ren et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Ren, Qun
Henes, Bernhard
Fairhead, Michael
Thöny-Meyer, Linda
High level production of tyrosinase in recombinant Escherichia coli
title High level production of tyrosinase in recombinant Escherichia coli
title_full High level production of tyrosinase in recombinant Escherichia coli
title_fullStr High level production of tyrosinase in recombinant Escherichia coli
title_full_unstemmed High level production of tyrosinase in recombinant Escherichia coli
title_short High level production of tyrosinase in recombinant Escherichia coli
title_sort high level production of tyrosinase in recombinant escherichia coli
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598836/
https://www.ncbi.nlm.nih.gov/pubmed/23442796
http://dx.doi.org/10.1186/1472-6750-13-18
work_keys_str_mv AT renqun highlevelproductionoftyrosinaseinrecombinantescherichiacoli
AT henesbernhard highlevelproductionoftyrosinaseinrecombinantescherichiacoli
AT fairheadmichael highlevelproductionoftyrosinaseinrecombinantescherichiacoli
AT thonymeyerlinda highlevelproductionoftyrosinaseinrecombinantescherichiacoli