Cargando…

Classify Hyperdiploidy Status of Multiple Myeloma Patients Using Gene Expression Profiles

Multiple myeloma (MM) is a cancer of antibody-making plasma cells. It frequently harbors alterations in DNA and chromosome copy numbers, and can be divided into two major subtypes, hyperdiploid (HMM) and non-hyperdiploid multiple myeloma (NHMM). The two subtypes have different survival prognosis, po...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yingxiang, Wang, Xujun, Zheng, Haiyang, Wang, Chengyang, Minvielle, Stéphane, Magrangeas, Florence, Avet-Loiseau, Hervé, Shah, Parantu K., Zhang, Yong, Munshi, Nikhil C., Li, Cheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598955/
https://www.ncbi.nlm.nih.gov/pubmed/23554930
http://dx.doi.org/10.1371/journal.pone.0058809
_version_ 1782262858383360000
author Li, Yingxiang
Wang, Xujun
Zheng, Haiyang
Wang, Chengyang
Minvielle, Stéphane
Magrangeas, Florence
Avet-Loiseau, Hervé
Shah, Parantu K.
Zhang, Yong
Munshi, Nikhil C.
Li, Cheng
author_facet Li, Yingxiang
Wang, Xujun
Zheng, Haiyang
Wang, Chengyang
Minvielle, Stéphane
Magrangeas, Florence
Avet-Loiseau, Hervé
Shah, Parantu K.
Zhang, Yong
Munshi, Nikhil C.
Li, Cheng
author_sort Li, Yingxiang
collection PubMed
description Multiple myeloma (MM) is a cancer of antibody-making plasma cells. It frequently harbors alterations in DNA and chromosome copy numbers, and can be divided into two major subtypes, hyperdiploid (HMM) and non-hyperdiploid multiple myeloma (NHMM). The two subtypes have different survival prognosis, possibly due to different but converging paths to oncogenesis. Existing methods for identifying the two subtypes are fluorescence in situ hybridization (FISH) and copy number microarrays, with increased cost and sample requirements. We hypothesize that chromosome alterations have their imprint in gene expression through dosage effect. Using five MM expression datasets that have HMM status measured by FISH and copy number microarrays, we have developed and validated a K-nearest-neighbor method to classify MM into HMM and NHMM based on gene expression profiles. Classification accuracy for test datasets ranges from 0.83 to 0.88. This classification will enable researchers to study differences and commonalities of the two MM subtypes in disease biology and prognosis using expression datasets without need for additional subtype measurements. Our study also supports the advantages of using cancer specific characteristics in feature design and pooling multiple rounds of classification results to improve accuracy. We provide R source code and processed datasets at www.ChengLiLab.org/software.
format Online
Article
Text
id pubmed-3598955
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35989552013-04-02 Classify Hyperdiploidy Status of Multiple Myeloma Patients Using Gene Expression Profiles Li, Yingxiang Wang, Xujun Zheng, Haiyang Wang, Chengyang Minvielle, Stéphane Magrangeas, Florence Avet-Loiseau, Hervé Shah, Parantu K. Zhang, Yong Munshi, Nikhil C. Li, Cheng PLoS One Research Article Multiple myeloma (MM) is a cancer of antibody-making plasma cells. It frequently harbors alterations in DNA and chromosome copy numbers, and can be divided into two major subtypes, hyperdiploid (HMM) and non-hyperdiploid multiple myeloma (NHMM). The two subtypes have different survival prognosis, possibly due to different but converging paths to oncogenesis. Existing methods for identifying the two subtypes are fluorescence in situ hybridization (FISH) and copy number microarrays, with increased cost and sample requirements. We hypothesize that chromosome alterations have their imprint in gene expression through dosage effect. Using five MM expression datasets that have HMM status measured by FISH and copy number microarrays, we have developed and validated a K-nearest-neighbor method to classify MM into HMM and NHMM based on gene expression profiles. Classification accuracy for test datasets ranges from 0.83 to 0.88. This classification will enable researchers to study differences and commonalities of the two MM subtypes in disease biology and prognosis using expression datasets without need for additional subtype measurements. Our study also supports the advantages of using cancer specific characteristics in feature design and pooling multiple rounds of classification results to improve accuracy. We provide R source code and processed datasets at www.ChengLiLab.org/software. Public Library of Science 2013-03-15 /pmc/articles/PMC3598955/ /pubmed/23554930 http://dx.doi.org/10.1371/journal.pone.0058809 Text en © 2013 Li et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Li, Yingxiang
Wang, Xujun
Zheng, Haiyang
Wang, Chengyang
Minvielle, Stéphane
Magrangeas, Florence
Avet-Loiseau, Hervé
Shah, Parantu K.
Zhang, Yong
Munshi, Nikhil C.
Li, Cheng
Classify Hyperdiploidy Status of Multiple Myeloma Patients Using Gene Expression Profiles
title Classify Hyperdiploidy Status of Multiple Myeloma Patients Using Gene Expression Profiles
title_full Classify Hyperdiploidy Status of Multiple Myeloma Patients Using Gene Expression Profiles
title_fullStr Classify Hyperdiploidy Status of Multiple Myeloma Patients Using Gene Expression Profiles
title_full_unstemmed Classify Hyperdiploidy Status of Multiple Myeloma Patients Using Gene Expression Profiles
title_short Classify Hyperdiploidy Status of Multiple Myeloma Patients Using Gene Expression Profiles
title_sort classify hyperdiploidy status of multiple myeloma patients using gene expression profiles
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598955/
https://www.ncbi.nlm.nih.gov/pubmed/23554930
http://dx.doi.org/10.1371/journal.pone.0058809
work_keys_str_mv AT liyingxiang classifyhyperdiploidystatusofmultiplemyelomapatientsusinggeneexpressionprofiles
AT wangxujun classifyhyperdiploidystatusofmultiplemyelomapatientsusinggeneexpressionprofiles
AT zhenghaiyang classifyhyperdiploidystatusofmultiplemyelomapatientsusinggeneexpressionprofiles
AT wangchengyang classifyhyperdiploidystatusofmultiplemyelomapatientsusinggeneexpressionprofiles
AT minviellestephane classifyhyperdiploidystatusofmultiplemyelomapatientsusinggeneexpressionprofiles
AT magrangeasflorence classifyhyperdiploidystatusofmultiplemyelomapatientsusinggeneexpressionprofiles
AT avetloiseauherve classifyhyperdiploidystatusofmultiplemyelomapatientsusinggeneexpressionprofiles
AT shahparantuk classifyhyperdiploidystatusofmultiplemyelomapatientsusinggeneexpressionprofiles
AT zhangyong classifyhyperdiploidystatusofmultiplemyelomapatientsusinggeneexpressionprofiles
AT munshinikhilc classifyhyperdiploidystatusofmultiplemyelomapatientsusinggeneexpressionprofiles
AT licheng classifyhyperdiploidystatusofmultiplemyelomapatientsusinggeneexpressionprofiles