Cargando…
Designing and benchmarking the MULTICOM protein structure prediction system
BACKGROUND: Predicting protein structure from sequence is one of the most significant and challenging problems in bioinformatics. Numerous bioinformatics techniques and tools have been developed to tackle almost every aspect of protein structure prediction ranging from structural feature prediction,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599124/ https://www.ncbi.nlm.nih.gov/pubmed/23442819 http://dx.doi.org/10.1186/1472-6807-13-2 |
_version_ | 1782262891687182336 |
---|---|
author | Li, Jilong Deng, Xin Eickholt, Jesse Cheng, Jianlin |
author_facet | Li, Jilong Deng, Xin Eickholt, Jesse Cheng, Jianlin |
author_sort | Li, Jilong |
collection | PubMed |
description | BACKGROUND: Predicting protein structure from sequence is one of the most significant and challenging problems in bioinformatics. Numerous bioinformatics techniques and tools have been developed to tackle almost every aspect of protein structure prediction ranging from structural feature prediction, template identification and query-template alignment to structure sampling, model quality assessment, and model refinement. How to synergistically select, integrate and improve the strengths of the complementary techniques at each prediction stage and build a high-performance system is becoming a critical issue for constructing a successful, competitive protein structure predictor. RESULTS: Over the past several years, we have constructed a standalone protein structure prediction system MULTICOM that combines multiple sources of information and complementary methods at all five stages of the protein structure prediction process including template identification, template combination, model generation, model assessment, and model refinement. The system was blindly tested during the ninth Critical Assessment of Techniques for Protein Structure Prediction (CASP9) in 2010 and yielded very good performance. In addition to studying the overall performance on the CASP9 benchmark, we thoroughly investigated the performance and contributions of each component at each stage of prediction. CONCLUSIONS: Our comprehensive and comparative study not only provides useful and practical insights about how to select, improve, and integrate complementary methods to build a cutting-edge protein structure prediction system but also identifies a few new sources of information that may help improve the design of a protein structure prediction system. Several components used in the MULTICOM system are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. |
format | Online Article Text |
id | pubmed-3599124 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35991242013-03-17 Designing and benchmarking the MULTICOM protein structure prediction system Li, Jilong Deng, Xin Eickholt, Jesse Cheng, Jianlin BMC Struct Biol Research Article BACKGROUND: Predicting protein structure from sequence is one of the most significant and challenging problems in bioinformatics. Numerous bioinformatics techniques and tools have been developed to tackle almost every aspect of protein structure prediction ranging from structural feature prediction, template identification and query-template alignment to structure sampling, model quality assessment, and model refinement. How to synergistically select, integrate and improve the strengths of the complementary techniques at each prediction stage and build a high-performance system is becoming a critical issue for constructing a successful, competitive protein structure predictor. RESULTS: Over the past several years, we have constructed a standalone protein structure prediction system MULTICOM that combines multiple sources of information and complementary methods at all five stages of the protein structure prediction process including template identification, template combination, model generation, model assessment, and model refinement. The system was blindly tested during the ninth Critical Assessment of Techniques for Protein Structure Prediction (CASP9) in 2010 and yielded very good performance. In addition to studying the overall performance on the CASP9 benchmark, we thoroughly investigated the performance and contributions of each component at each stage of prediction. CONCLUSIONS: Our comprehensive and comparative study not only provides useful and practical insights about how to select, improve, and integrate complementary methods to build a cutting-edge protein structure prediction system but also identifies a few new sources of information that may help improve the design of a protein structure prediction system. Several components used in the MULTICOM system are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. BioMed Central 2013-02-27 /pmc/articles/PMC3599124/ /pubmed/23442819 http://dx.doi.org/10.1186/1472-6807-13-2 Text en Copyright ©2013 Li et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Li, Jilong Deng, Xin Eickholt, Jesse Cheng, Jianlin Designing and benchmarking the MULTICOM protein structure prediction system |
title | Designing and benchmarking the MULTICOM protein structure prediction system |
title_full | Designing and benchmarking the MULTICOM protein structure prediction system |
title_fullStr | Designing and benchmarking the MULTICOM protein structure prediction system |
title_full_unstemmed | Designing and benchmarking the MULTICOM protein structure prediction system |
title_short | Designing and benchmarking the MULTICOM protein structure prediction system |
title_sort | designing and benchmarking the multicom protein structure prediction system |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599124/ https://www.ncbi.nlm.nih.gov/pubmed/23442819 http://dx.doi.org/10.1186/1472-6807-13-2 |
work_keys_str_mv | AT lijilong designingandbenchmarkingthemulticomproteinstructurepredictionsystem AT dengxin designingandbenchmarkingthemulticomproteinstructurepredictionsystem AT eickholtjesse designingandbenchmarkingthemulticomproteinstructurepredictionsystem AT chengjianlin designingandbenchmarkingthemulticomproteinstructurepredictionsystem |