Cargando…

Toll-like receptor 3 in Epstein-Barr virus-associated nasopharyngeal carcinomas: consistent expression and cytotoxic effects of its synthetic ligand poly(A:U) combined to a Smac-mimetic

BACKGROUND: Nasopharyngeal carcinomas (NPC) are consistently associated with the Epstein-Barr virus (EBV). Though NPCs are more radiosensitive and chemosensitive than other tumors of the upper aero-digestive tract, many therapeutic challenges remain. In a previous report, we have presented data supp...

Descripción completa

Detalles Bibliográficos
Autores principales: Vérillaud, Benjamin, Gressette, Mélanie, Morel, Yannis, Paturel, Carine, Herman, Philippe, Lo, Kwok Wai, Tsao, Sai Wah, Wassef, Michel, Jimenez-Pailhes, Anne-Sophie, Busson, Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599303/
https://www.ncbi.nlm.nih.gov/pubmed/23198710
http://dx.doi.org/10.1186/1750-9378-7-36
Descripción
Sumario:BACKGROUND: Nasopharyngeal carcinomas (NPC) are consistently associated with the Epstein-Barr virus (EBV). Though NPCs are more radiosensitive and chemosensitive than other tumors of the upper aero-digestive tract, many therapeutic challenges remain. In a previous report, we have presented data supporting a possible therapeutic strategy based on artificial TLR3 stimulation combined to the inhibition of the IAP protein family (Inhibitor of Apoptosis Proteins). The present study was designed to progress towards practical applications of this strategy pursuing 2 main objectives: 1) to formally demonstrate expression of the TLR3 protein by malignant NPC cells; 2) to investigate the effect of poly(A:U) as a novel TLR3-agonist more specific than poly(I:C) which was used in our previous study. METHODS: TLR3 expression was investigated in a series of NPC cell lines and clinical specimens by Western blot analysis and immunohistochemistry, respectively. The effects on NPC cells growth of the TLR3 ligand poly(A:U) used either alone or in combination with RMT5265, an IAP inhibitor based on Smac-mimicry, were assessed using MTT assays and clonogenic assays. RESULTS: TLR3 was detected at a high level in all NPC cell lines and clinical specimens. Low concentrations of poly(A:U) were applied to several types of NPC cells including cells from the C17 xenograft which for the first time have been adapted to permanent propagation in vitro. As a single agent, poly(A:U) had no significant effects on cell growth and cell survival. In contrast, dramatic effects were obtained when it was combined with the IAP inhibitor RMT5265. These effects were obtained using concentrations as low as 0.5 μg/ml (poly(A:U)) and 50 nM (RMT5265). CONCLUSION: These data confirm that TLR3 expression is a factor of vulnerability for NPC cells. They suggest that in some specific pathological and pharmacological contexts, it might be worth to use Smac-mimetics at very low doses, allowing a better management of secondary effects. In light of our observations, combined use of both types of compounds should be considered for treatment of nasopharyngeal carcinomas.