Cargando…

Hybrid nanostructured coating for increased resistance of prosthetic devices to staphylococcal colonization

Prosthetic medical device-associated infections are responsible for significant morbidity and mortality rates. Novel improved materials and surfaces exhibiting inappropriate conditions for microbial development are urgently required in the medical environment. This study reveals the benefit of using...

Descripción completa

Detalles Bibliográficos
Autores principales: Anghel, Ion, Grumezescu, Alexandru Mihai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599461/
https://www.ncbi.nlm.nih.gov/pubmed/23281840
http://dx.doi.org/10.1186/1556-276X-8-6
Descripción
Sumario:Prosthetic medical device-associated infections are responsible for significant morbidity and mortality rates. Novel improved materials and surfaces exhibiting inappropriate conditions for microbial development are urgently required in the medical environment. This study reveals the benefit of using natural Mentha piperita essential oil, combined with a 5 nm core/shell nanosystem-improved surface exhibiting anti-adherence and antibiofilm properties. This strategy reveals a dual role of the nano-oil system; on one hand, inhibiting bacterial adherence and, on the other hand, exhibiting bactericidal effect, the core/shell nanosystem is acting as a controlled releasing machine for the essential oil. Our results demonstrate that this dual nanobiosystem is very efficient also for inhibiting biofilm formation, being a good candidate for the design of novel material surfaces used for prosthetic devices.