Cargando…
Increasing influence of heat stress on French maize yields from the 1960s to the 2030s
Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the e...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599478/ https://www.ncbi.nlm.nih.gov/pubmed/23504849 http://dx.doi.org/10.1111/gcb.12069 |
_version_ | 1782262972397125632 |
---|---|
author | Hawkins, Ed Fricker, Thomas E Challinor, Andrew J Ferro, Christopher A T Kit Ho, Chun Osborne, Tom M |
author_facet | Hawkins, Ed Fricker, Thomas E Challinor, Andrew J Ferro, Christopher A T Kit Ho, Chun Osborne, Tom M |
author_sort | Hawkins, Ed |
collection | PubMed |
description | Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target. |
format | Online Article Text |
id | pubmed-3599478 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-35994782013-03-19 Increasing influence of heat stress on French maize yields from the 1960s to the 2030s Hawkins, Ed Fricker, Thomas E Challinor, Andrew J Ferro, Christopher A T Kit Ho, Chun Osborne, Tom M Glob Chang Biol Primary Research Articles Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target. Blackwell Publishing Ltd 2013-03 2012-12-24 /pmc/articles/PMC3599478/ /pubmed/23504849 http://dx.doi.org/10.1111/gcb.12069 Text en Copyright © 2013 Blackwell Publishing Ltd http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Primary Research Articles Hawkins, Ed Fricker, Thomas E Challinor, Andrew J Ferro, Christopher A T Kit Ho, Chun Osborne, Tom M Increasing influence of heat stress on French maize yields from the 1960s to the 2030s |
title | Increasing influence of heat stress on French maize yields from the 1960s to the 2030s |
title_full | Increasing influence of heat stress on French maize yields from the 1960s to the 2030s |
title_fullStr | Increasing influence of heat stress on French maize yields from the 1960s to the 2030s |
title_full_unstemmed | Increasing influence of heat stress on French maize yields from the 1960s to the 2030s |
title_short | Increasing influence of heat stress on French maize yields from the 1960s to the 2030s |
title_sort | increasing influence of heat stress on french maize yields from the 1960s to the 2030s |
topic | Primary Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599478/ https://www.ncbi.nlm.nih.gov/pubmed/23504849 http://dx.doi.org/10.1111/gcb.12069 |
work_keys_str_mv | AT hawkinsed increasinginfluenceofheatstressonfrenchmaizeyieldsfromthe1960stothe2030s AT frickerthomase increasinginfluenceofheatstressonfrenchmaizeyieldsfromthe1960stothe2030s AT challinorandrewj increasinginfluenceofheatstressonfrenchmaizeyieldsfromthe1960stothe2030s AT ferrochristopherat increasinginfluenceofheatstressonfrenchmaizeyieldsfromthe1960stothe2030s AT kithochun increasinginfluenceofheatstressonfrenchmaizeyieldsfromthe1960stothe2030s AT osbornetomm increasinginfluenceofheatstressonfrenchmaizeyieldsfromthe1960stothe2030s |