Cargando…
DNdisorder: predicting protein disorder using boosting and deep networks
BACKGROUND: A number of proteins contain regions which do not adopt a stable tertiary structure in their native state. Such regions known as disordered regions have been shown to participate in many vital cell functions and are increasingly being examined as drug targets. RESULTS: This work presents...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599628/ https://www.ncbi.nlm.nih.gov/pubmed/23497251 http://dx.doi.org/10.1186/1471-2105-14-88 |
_version_ | 1782263006665637888 |
---|---|
author | Eickholt, Jesse Cheng, Jianlin |
author_facet | Eickholt, Jesse Cheng, Jianlin |
author_sort | Eickholt, Jesse |
collection | PubMed |
description | BACKGROUND: A number of proteins contain regions which do not adopt a stable tertiary structure in their native state. Such regions known as disordered regions have been shown to participate in many vital cell functions and are increasingly being examined as drug targets. RESULTS: This work presents a new sequence based approach for the prediction of protein disorder. The method uses boosted ensembles of deep networks to make predictions and participated in the CASP10 experiment. In a 10 fold cross validation procedure on a dataset of 723 proteins, the method achieved an average balanced accuracy of 0.82 and an area under the ROC curve of 0.90. These results are achieved in part by a boosting procedure which is able to steadily increase balanced accuracy and the area under the ROC curve over several rounds. The method also compared competitively when evaluated against a number of state-of-the-art disorder predictors on CASP9 and CASP10 benchmark datasets. CONCLUSIONS: DNdisorder is available as a web service at http://iris.rnet.missouri.edu/dndisorder/. |
format | Online Article Text |
id | pubmed-3599628 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35996282013-03-23 DNdisorder: predicting protein disorder using boosting and deep networks Eickholt, Jesse Cheng, Jianlin BMC Bioinformatics Methodology Article BACKGROUND: A number of proteins contain regions which do not adopt a stable tertiary structure in their native state. Such regions known as disordered regions have been shown to participate in many vital cell functions and are increasingly being examined as drug targets. RESULTS: This work presents a new sequence based approach for the prediction of protein disorder. The method uses boosted ensembles of deep networks to make predictions and participated in the CASP10 experiment. In a 10 fold cross validation procedure on a dataset of 723 proteins, the method achieved an average balanced accuracy of 0.82 and an area under the ROC curve of 0.90. These results are achieved in part by a boosting procedure which is able to steadily increase balanced accuracy and the area under the ROC curve over several rounds. The method also compared competitively when evaluated against a number of state-of-the-art disorder predictors on CASP9 and CASP10 benchmark datasets. CONCLUSIONS: DNdisorder is available as a web service at http://iris.rnet.missouri.edu/dndisorder/. BioMed Central 2013-03-06 /pmc/articles/PMC3599628/ /pubmed/23497251 http://dx.doi.org/10.1186/1471-2105-14-88 Text en Copyright ©2013 Eickholt and Cheng; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Eickholt, Jesse Cheng, Jianlin DNdisorder: predicting protein disorder using boosting and deep networks |
title | DNdisorder: predicting protein disorder using boosting and deep networks |
title_full | DNdisorder: predicting protein disorder using boosting and deep networks |
title_fullStr | DNdisorder: predicting protein disorder using boosting and deep networks |
title_full_unstemmed | DNdisorder: predicting protein disorder using boosting and deep networks |
title_short | DNdisorder: predicting protein disorder using boosting and deep networks |
title_sort | dndisorder: predicting protein disorder using boosting and deep networks |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599628/ https://www.ncbi.nlm.nih.gov/pubmed/23497251 http://dx.doi.org/10.1186/1471-2105-14-88 |
work_keys_str_mv | AT eickholtjesse dndisorderpredictingproteindisorderusingboostinganddeepnetworks AT chengjianlin dndisorderpredictingproteindisorderusingboostinganddeepnetworks |