Cargando…
DNdisorder: predicting protein disorder using boosting and deep networks
BACKGROUND: A number of proteins contain regions which do not adopt a stable tertiary structure in their native state. Such regions known as disordered regions have been shown to participate in many vital cell functions and are increasingly being examined as drug targets. RESULTS: This work presents...
Autores principales: | Eickholt, Jesse, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599628/ https://www.ncbi.nlm.nih.gov/pubmed/23497251 http://dx.doi.org/10.1186/1471-2105-14-88 |
Ejemplares similares
-
A study and benchmark of DNcon: a method for protein residue-residue contact prediction using deep networks
por: Eickholt, Jesse, et al.
Publicado: (2013) -
Improving Protein Fold Recognition by Deep Learning Networks
por: Jo, Taeho, et al.
Publicado: (2015) -
PreDisorder: ab initio sequence-based prediction of protein disordered regions
por: Deng, Xin, et al.
Publicado: (2009) -
NNcon: improved protein contact map prediction using 2D-recursive neural networks
por: Tegge, Allison N., et al.
Publicado: (2009) -
An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions
por: Deng, Xin, et al.
Publicado: (2015)