Cargando…
Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey
BACKGROUND: Vertebrate pheromones are known to prime the endocrine system, especially the hypothalamic-pituitary-gonadal (HPG) axis. However, no known pheromone molecule has been shown to modulate directly the synthesis or release of gonadotropin releasing hormone (GnRH), the main regulator of the H...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599739/ https://www.ncbi.nlm.nih.gov/pubmed/23331321 http://dx.doi.org/10.1186/1471-2202-14-11 |
_version_ | 1782475522796683264 |
---|---|
author | Chung-Davidson, Yu-Wen Wang, Huiyong Siefkes, Michael J Bryan, Mara B Wu, Hong Johnson, Nicholas S Li, Weiming |
author_facet | Chung-Davidson, Yu-Wen Wang, Huiyong Siefkes, Michael J Bryan, Mara B Wu, Hong Johnson, Nicholas S Li, Weiming |
author_sort | Chung-Davidson, Yu-Wen |
collection | PubMed |
description | BACKGROUND: Vertebrate pheromones are known to prime the endocrine system, especially the hypothalamic-pituitary-gonadal (HPG) axis. However, no known pheromone molecule has been shown to modulate directly the synthesis or release of gonadotropin releasing hormone (GnRH), the main regulator of the HPG axis. We selected sea lamprey (Petromyzon marinus) as a model system to determine whether a single pheromone component alters the output of GnRH. Sea lamprey male sex pheromones contain a main component, 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3 keto-petromyzonol sulfate or 3kPZS), which has been shown to modulate behaviors of mature females. Through a series of experiments, we tested the hypothesis that 3kPZS modulates both synthesis and release of GnRH, and subsequently, HPG output in immature sea lamprey. RESULTS: The results showed that natural male pheromone mixtures induced differential steroid responses but facilitated sexual maturation in both sexes of immature animals (χ(2) = 5.042, dF = 1, p < 0.05). Exposure to 3kPZS increased plasma 15α-hydroxyprogesterone (15α-P) concentrations (one-way ANOVA, p < 0.05) and brain gene expressions (genes examined: three lamprey (l) GnRH-I transcripts, lGnRH-III, Jun and Jun N-terminal kinase (JNK); one-way ANOVA, p < 0.05), but did not alter the number of GnRH neurons in the hypothalamus in immature animals. In addition, 3kPZS treatments increased lGnRH peptide concentrations in the forebrain and modulated their levels in plasma. Overall, 3kPZS modulation of HPG axis is more pronounced in immature males than in females. CONCLUSIONS: We conclude that a single male pheromone component primes the HPG axis in immature sea lamprey in a sexually dimorphic manner. |
format | Online Article Text |
id | pubmed-3599739 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35997392013-03-17 Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey Chung-Davidson, Yu-Wen Wang, Huiyong Siefkes, Michael J Bryan, Mara B Wu, Hong Johnson, Nicholas S Li, Weiming BMC Neurosci Research Article BACKGROUND: Vertebrate pheromones are known to prime the endocrine system, especially the hypothalamic-pituitary-gonadal (HPG) axis. However, no known pheromone molecule has been shown to modulate directly the synthesis or release of gonadotropin releasing hormone (GnRH), the main regulator of the HPG axis. We selected sea lamprey (Petromyzon marinus) as a model system to determine whether a single pheromone component alters the output of GnRH. Sea lamprey male sex pheromones contain a main component, 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3 keto-petromyzonol sulfate or 3kPZS), which has been shown to modulate behaviors of mature females. Through a series of experiments, we tested the hypothesis that 3kPZS modulates both synthesis and release of GnRH, and subsequently, HPG output in immature sea lamprey. RESULTS: The results showed that natural male pheromone mixtures induced differential steroid responses but facilitated sexual maturation in both sexes of immature animals (χ(2) = 5.042, dF = 1, p < 0.05). Exposure to 3kPZS increased plasma 15α-hydroxyprogesterone (15α-P) concentrations (one-way ANOVA, p < 0.05) and brain gene expressions (genes examined: three lamprey (l) GnRH-I transcripts, lGnRH-III, Jun and Jun N-terminal kinase (JNK); one-way ANOVA, p < 0.05), but did not alter the number of GnRH neurons in the hypothalamus in immature animals. In addition, 3kPZS treatments increased lGnRH peptide concentrations in the forebrain and modulated their levels in plasma. Overall, 3kPZS modulation of HPG axis is more pronounced in immature males than in females. CONCLUSIONS: We conclude that a single male pheromone component primes the HPG axis in immature sea lamprey in a sexually dimorphic manner. BioMed Central 2013-01-20 /pmc/articles/PMC3599739/ /pubmed/23331321 http://dx.doi.org/10.1186/1471-2202-14-11 Text en Copyright ©2013 Chung-Davidson et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chung-Davidson, Yu-Wen Wang, Huiyong Siefkes, Michael J Bryan, Mara B Wu, Hong Johnson, Nicholas S Li, Weiming Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey |
title | Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey |
title_full | Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey |
title_fullStr | Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey |
title_full_unstemmed | Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey |
title_short | Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey |
title_sort | pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599739/ https://www.ncbi.nlm.nih.gov/pubmed/23331321 http://dx.doi.org/10.1186/1471-2202-14-11 |
work_keys_str_mv | AT chungdavidsonyuwen pheromonalbileacid3ketopetromyzonolsulfateprimestheneuroendocrinesysteminsealamprey AT wanghuiyong pheromonalbileacid3ketopetromyzonolsulfateprimestheneuroendocrinesysteminsealamprey AT siefkesmichaelj pheromonalbileacid3ketopetromyzonolsulfateprimestheneuroendocrinesysteminsealamprey AT bryanmarab pheromonalbileacid3ketopetromyzonolsulfateprimestheneuroendocrinesysteminsealamprey AT wuhong pheromonalbileacid3ketopetromyzonolsulfateprimestheneuroendocrinesysteminsealamprey AT johnsonnicholass pheromonalbileacid3ketopetromyzonolsulfateprimestheneuroendocrinesysteminsealamprey AT liweiming pheromonalbileacid3ketopetromyzonolsulfateprimestheneuroendocrinesysteminsealamprey |