Cargando…
Reducing and meta-analysing estimates from distributed lag non-linear models
BACKGROUND: The two-stage time series design represents a powerful analytical tool in environmental epidemiology. Recently, models for both stages have been extended with the development of distributed lag non-linear models (DLNMs), a methodology for investigating simultaneously non-linear and lagge...
Autores principales: | Gasparrini, Antonio, Armstrong, Ben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599933/ https://www.ncbi.nlm.nih.gov/pubmed/23297754 http://dx.doi.org/10.1186/1471-2288-13-1 |
Ejemplares similares
-
Distributed lag non-linear models
por: Gasparrini, A, et al.
Publicado: (2010) -
Modeling exposure–lag–response associations with distributed lag non-linear models
por: Gasparrini, Antonio
Publicado: (2014) -
Attributable risk from distributed lag models
por: Gasparrini, Antonio, et al.
Publicado: (2014) -
Extensions of the distributed lag non-linear model (DLNM) to account for cumulative mortality
por: Guo, Chao-Yu, et al.
Publicado: (2021) -
Using Distributed Lag Non-Linear Models to Estimate Exposure Lag-Response Associations between Long-Term Air Pollution Exposure and Incidence of Cardiovascular Disease
por: Kriit, Hedi Katre, et al.
Publicado: (2022)