Cargando…
Mining SOM expression portraits: feature selection and integrating concepts of molecular function
BACKGROUND: Self organizing maps (SOM) enable the straightforward portraying of high-dimensional data of large sample collections in terms of sample-specific images. The analysis of their texture provides so-called spot-clusters of co-expressed genes which require subsequent significance filtering a...
Autores principales: | Wirth, Henry, von Bergen, Martin, Binder, Hans |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599960/ https://www.ncbi.nlm.nih.gov/pubmed/23043905 http://dx.doi.org/10.1186/1756-0381-5-18 |
Ejemplares similares
-
oposSOM-Browser: an interactive tool to explore omics data landscapes in health science
por: Loeffler-Wirth, Henry, et al.
Publicado: (2020) -
Transcriptional states of CAR-T infusion relate to neurotoxicity – lessons from high-resolution single-cell SOM expression portraying
por: Loeffler-Wirth, Henry, et al.
Publicado: (2022) -
Expression cartography of human tissues using self organizing maps
por: Wirth, Henry, et al.
Publicado: (2011) -
Fysikåret som gått
Publicado: (2008) -
ShinySOM: graphical SOM-based analysis of single-cell cytometry data
por: Kratochvíl, Miroslav, et al.
Publicado: (2020)