Cargando…
The F-Box Protein MEC-15 (FBXW9) Promotes Synaptic Transmission in GABAergic Motor Neurons in C. elegans
Ubiquitination controls the activity of many proteins and has been implicated in almost every aspect of neuronal cell biology. Characterizing the precise function of ubiquitin ligases, the enzymes that catalyze ubiquitination of target proteins, is key to understanding distinct functions of ubiquiti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601060/ https://www.ncbi.nlm.nih.gov/pubmed/23527112 http://dx.doi.org/10.1371/journal.pone.0059132 |
_version_ | 1782475708970303488 |
---|---|
author | Sun, Yu Hu, Zhitao Goeb, Yannick Dreier, Lars |
author_facet | Sun, Yu Hu, Zhitao Goeb, Yannick Dreier, Lars |
author_sort | Sun, Yu |
collection | PubMed |
description | Ubiquitination controls the activity of many proteins and has been implicated in almost every aspect of neuronal cell biology. Characterizing the precise function of ubiquitin ligases, the enzymes that catalyze ubiquitination of target proteins, is key to understanding distinct functions of ubiquitination. F-box proteins are the variable subunits of the large family of SCF ubiquitin ligases and are responsible for binding and recognizing specific ubiquitination targets. Here, we investigated the function of the F-box protein MEC-15 (FBXW9), one of a small number of F-box proteins evolutionarily conserved from C. elegans to mammals. mec-15 is widely expressed in the nervous system including GABAergic and cholinergic motor neurons. Electrophysiological and behavioral analyses indicate that GABAergic synaptic transmission is reduced in mec-15 mutants while cholinergic transmission appears normal. In the absence of MEC-15, the abundance of the synaptic vesicle protein SNB-1 (synaptobrevin) is reduced at synapses and increased in cell bodies of GABAergic motor neurons, suggesting that MEC-15 affects the trafficking of SNB-1 between cell bodies and synapses and may promote GABA release by regulating the abundance of SNB-1 at synapses. |
format | Online Article Text |
id | pubmed-3601060 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36010602013-03-22 The F-Box Protein MEC-15 (FBXW9) Promotes Synaptic Transmission in GABAergic Motor Neurons in C. elegans Sun, Yu Hu, Zhitao Goeb, Yannick Dreier, Lars PLoS One Research Article Ubiquitination controls the activity of many proteins and has been implicated in almost every aspect of neuronal cell biology. Characterizing the precise function of ubiquitin ligases, the enzymes that catalyze ubiquitination of target proteins, is key to understanding distinct functions of ubiquitination. F-box proteins are the variable subunits of the large family of SCF ubiquitin ligases and are responsible for binding and recognizing specific ubiquitination targets. Here, we investigated the function of the F-box protein MEC-15 (FBXW9), one of a small number of F-box proteins evolutionarily conserved from C. elegans to mammals. mec-15 is widely expressed in the nervous system including GABAergic and cholinergic motor neurons. Electrophysiological and behavioral analyses indicate that GABAergic synaptic transmission is reduced in mec-15 mutants while cholinergic transmission appears normal. In the absence of MEC-15, the abundance of the synaptic vesicle protein SNB-1 (synaptobrevin) is reduced at synapses and increased in cell bodies of GABAergic motor neurons, suggesting that MEC-15 affects the trafficking of SNB-1 between cell bodies and synapses and may promote GABA release by regulating the abundance of SNB-1 at synapses. Public Library of Science 2013-03-18 /pmc/articles/PMC3601060/ /pubmed/23527112 http://dx.doi.org/10.1371/journal.pone.0059132 Text en © 2013 Sun et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Sun, Yu Hu, Zhitao Goeb, Yannick Dreier, Lars The F-Box Protein MEC-15 (FBXW9) Promotes Synaptic Transmission in GABAergic Motor Neurons in C. elegans |
title | The F-Box Protein MEC-15 (FBXW9) Promotes Synaptic Transmission in GABAergic Motor Neurons in C. elegans
|
title_full | The F-Box Protein MEC-15 (FBXW9) Promotes Synaptic Transmission in GABAergic Motor Neurons in C. elegans
|
title_fullStr | The F-Box Protein MEC-15 (FBXW9) Promotes Synaptic Transmission in GABAergic Motor Neurons in C. elegans
|
title_full_unstemmed | The F-Box Protein MEC-15 (FBXW9) Promotes Synaptic Transmission in GABAergic Motor Neurons in C. elegans
|
title_short | The F-Box Protein MEC-15 (FBXW9) Promotes Synaptic Transmission in GABAergic Motor Neurons in C. elegans
|
title_sort | f-box protein mec-15 (fbxw9) promotes synaptic transmission in gabaergic motor neurons in c. elegans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601060/ https://www.ncbi.nlm.nih.gov/pubmed/23527112 http://dx.doi.org/10.1371/journal.pone.0059132 |
work_keys_str_mv | AT sunyu thefboxproteinmec15fbxw9promotessynaptictransmissioningabaergicmotorneuronsincelegans AT huzhitao thefboxproteinmec15fbxw9promotessynaptictransmissioningabaergicmotorneuronsincelegans AT goebyannick thefboxproteinmec15fbxw9promotessynaptictransmissioningabaergicmotorneuronsincelegans AT dreierlars thefboxproteinmec15fbxw9promotessynaptictransmissioningabaergicmotorneuronsincelegans AT sunyu fboxproteinmec15fbxw9promotessynaptictransmissioningabaergicmotorneuronsincelegans AT huzhitao fboxproteinmec15fbxw9promotessynaptictransmissioningabaergicmotorneuronsincelegans AT goebyannick fboxproteinmec15fbxw9promotessynaptictransmissioningabaergicmotorneuronsincelegans AT dreierlars fboxproteinmec15fbxw9promotessynaptictransmissioningabaergicmotorneuronsincelegans |