Cargando…
Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization
Flow cytometry is a widely used technique for the analysis of cell populations in the study and diagnosis of human diseases. It yields large amounts of high-dimensional data, the analysis of which would clearly benefit from efficient computational approaches aiming at automated diagnosis and decisio...
Autores principales: | Biehl, Michael, Bunte, Kerstin, Schneider, Petra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601077/ https://www.ncbi.nlm.nih.gov/pubmed/23527184 http://dx.doi.org/10.1371/journal.pone.0059401 |
Ejemplares similares
-
K-means quantization for a web-based open-source flow cytometry analysis platform
por: Wong, Nathan, et al.
Publicado: (2021) -
Flow cytometry analysis of the microbiota associated with the midguts of vector mosquitoes
por: Habtewold, Tibebu, et al.
Publicado: (2016) -
Round Randomized Learning Vector Quantization for Brain Tumor Imaging
por: Sheikh Abdullah, Siti Norul Huda, et al.
Publicado: (2016) -
Self-incremental learning vector quantization with human cognitive biases
por: Manome, Nobuhito, et al.
Publicado: (2021) -
Classification of Incidental Carcinoma of the Prostate Using Learning Vector Quantization and Support Vector Machines
por: Mattfeldt, Torsten, et al.
Publicado: (2004)