Cargando…
Pericentric chromatin loops function as a nonlinear spring in mitotic force balance
The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulat...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601350/ https://www.ncbi.nlm.nih.gov/pubmed/23509068 http://dx.doi.org/10.1083/jcb.201208163 |
_version_ | 1782475757262471168 |
---|---|
author | Stephens, Andrew D. Haggerty, Rachel A. Vasquez, Paula A. Vicci, Leandra Snider, Chloe E. Shi, Fu Quammen, Cory Mullins, Christopher Haase, Julian Taylor, Russell M. Verdaasdonk, Jolien S. Falvo, Michael R. Jin, Yuan Forest, M. Gregory Bloom, Kerry |
author_facet | Stephens, Andrew D. Haggerty, Rachel A. Vasquez, Paula A. Vicci, Leandra Snider, Chloe E. Shi, Fu Quammen, Cory Mullins, Christopher Haase, Julian Taylor, Russell M. Verdaasdonk, Jolien S. Falvo, Michael R. Jin, Yuan Forest, M. Gregory Bloom, Kerry |
author_sort | Stephens, Andrew D. |
collection | PubMed |
description | The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes. |
format | Online Article Text |
id | pubmed-3601350 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-36013502013-09-18 Pericentric chromatin loops function as a nonlinear spring in mitotic force balance Stephens, Andrew D. Haggerty, Rachel A. Vasquez, Paula A. Vicci, Leandra Snider, Chloe E. Shi, Fu Quammen, Cory Mullins, Christopher Haase, Julian Taylor, Russell M. Verdaasdonk, Jolien S. Falvo, Michael R. Jin, Yuan Forest, M. Gregory Bloom, Kerry J Cell Biol Research Articles The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes. The Rockefeller University Press 2013-03-18 /pmc/articles/PMC3601350/ /pubmed/23509068 http://dx.doi.org/10.1083/jcb.201208163 Text en © 2013 Stephens et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Research Articles Stephens, Andrew D. Haggerty, Rachel A. Vasquez, Paula A. Vicci, Leandra Snider, Chloe E. Shi, Fu Quammen, Cory Mullins, Christopher Haase, Julian Taylor, Russell M. Verdaasdonk, Jolien S. Falvo, Michael R. Jin, Yuan Forest, M. Gregory Bloom, Kerry Pericentric chromatin loops function as a nonlinear spring in mitotic force balance |
title | Pericentric chromatin loops function as a nonlinear spring in mitotic force balance |
title_full | Pericentric chromatin loops function as a nonlinear spring in mitotic force balance |
title_fullStr | Pericentric chromatin loops function as a nonlinear spring in mitotic force balance |
title_full_unstemmed | Pericentric chromatin loops function as a nonlinear spring in mitotic force balance |
title_short | Pericentric chromatin loops function as a nonlinear spring in mitotic force balance |
title_sort | pericentric chromatin loops function as a nonlinear spring in mitotic force balance |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601350/ https://www.ncbi.nlm.nih.gov/pubmed/23509068 http://dx.doi.org/10.1083/jcb.201208163 |
work_keys_str_mv | AT stephensandrewd pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance AT haggertyrachela pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance AT vasquezpaulaa pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance AT viccileandra pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance AT sniderchloee pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance AT shifu pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance AT quammencory pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance AT mullinschristopher pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance AT haasejulian pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance AT taylorrussellm pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance AT verdaasdonkjoliens pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance AT falvomichaelr pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance AT jinyuan pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance AT forestmgregory pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance AT bloomkerry pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance |