Cargando…

Pericentric chromatin loops function as a nonlinear spring in mitotic force balance

The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulat...

Descripción completa

Detalles Bibliográficos
Autores principales: Stephens, Andrew D., Haggerty, Rachel A., Vasquez, Paula A., Vicci, Leandra, Snider, Chloe E., Shi, Fu, Quammen, Cory, Mullins, Christopher, Haase, Julian, Taylor, Russell M., Verdaasdonk, Jolien S., Falvo, Michael R., Jin, Yuan, Forest, M. Gregory, Bloom, Kerry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601350/
https://www.ncbi.nlm.nih.gov/pubmed/23509068
http://dx.doi.org/10.1083/jcb.201208163
_version_ 1782475757262471168
author Stephens, Andrew D.
Haggerty, Rachel A.
Vasquez, Paula A.
Vicci, Leandra
Snider, Chloe E.
Shi, Fu
Quammen, Cory
Mullins, Christopher
Haase, Julian
Taylor, Russell M.
Verdaasdonk, Jolien S.
Falvo, Michael R.
Jin, Yuan
Forest, M. Gregory
Bloom, Kerry
author_facet Stephens, Andrew D.
Haggerty, Rachel A.
Vasquez, Paula A.
Vicci, Leandra
Snider, Chloe E.
Shi, Fu
Quammen, Cory
Mullins, Christopher
Haase, Julian
Taylor, Russell M.
Verdaasdonk, Jolien S.
Falvo, Michael R.
Jin, Yuan
Forest, M. Gregory
Bloom, Kerry
author_sort Stephens, Andrew D.
collection PubMed
description The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes.
format Online
Article
Text
id pubmed-3601350
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-36013502013-09-18 Pericentric chromatin loops function as a nonlinear spring in mitotic force balance Stephens, Andrew D. Haggerty, Rachel A. Vasquez, Paula A. Vicci, Leandra Snider, Chloe E. Shi, Fu Quammen, Cory Mullins, Christopher Haase, Julian Taylor, Russell M. Verdaasdonk, Jolien S. Falvo, Michael R. Jin, Yuan Forest, M. Gregory Bloom, Kerry J Cell Biol Research Articles The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes. The Rockefeller University Press 2013-03-18 /pmc/articles/PMC3601350/ /pubmed/23509068 http://dx.doi.org/10.1083/jcb.201208163 Text en © 2013 Stephens et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
spellingShingle Research Articles
Stephens, Andrew D.
Haggerty, Rachel A.
Vasquez, Paula A.
Vicci, Leandra
Snider, Chloe E.
Shi, Fu
Quammen, Cory
Mullins, Christopher
Haase, Julian
Taylor, Russell M.
Verdaasdonk, Jolien S.
Falvo, Michael R.
Jin, Yuan
Forest, M. Gregory
Bloom, Kerry
Pericentric chromatin loops function as a nonlinear spring in mitotic force balance
title Pericentric chromatin loops function as a nonlinear spring in mitotic force balance
title_full Pericentric chromatin loops function as a nonlinear spring in mitotic force balance
title_fullStr Pericentric chromatin loops function as a nonlinear spring in mitotic force balance
title_full_unstemmed Pericentric chromatin loops function as a nonlinear spring in mitotic force balance
title_short Pericentric chromatin loops function as a nonlinear spring in mitotic force balance
title_sort pericentric chromatin loops function as a nonlinear spring in mitotic force balance
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601350/
https://www.ncbi.nlm.nih.gov/pubmed/23509068
http://dx.doi.org/10.1083/jcb.201208163
work_keys_str_mv AT stephensandrewd pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance
AT haggertyrachela pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance
AT vasquezpaulaa pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance
AT viccileandra pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance
AT sniderchloee pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance
AT shifu pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance
AT quammencory pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance
AT mullinschristopher pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance
AT haasejulian pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance
AT taylorrussellm pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance
AT verdaasdonkjoliens pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance
AT falvomichaelr pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance
AT jinyuan pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance
AT forestmgregory pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance
AT bloomkerry pericentricchromatinloopsfunctionasanonlinearspringinmitoticforcebalance