Cargando…
The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit
Mitochondrial complex I (CI) is an essential component in energy production through oxidative phosphorylation. Most CI subunits are encoded by nuclear genes, translated in the cytoplasm, and imported into mitochondria. Upon entry, they are embedded into the mitochondrial inner membrane. How these me...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601355/ https://www.ncbi.nlm.nih.gov/pubmed/23509070 http://dx.doi.org/10.1083/jcb.201208033 |
_version_ | 1782475758385496064 |
---|---|
author | Zhang, Ke Li, Zhihong Jaiswal, Manish Bayat, Vafa Xiong, Bo Sandoval, Hector Charng, Wu-Lin David, Gabriela Haueter, Claire Yamamoto, Shinya Graham, Brett H. Bellen, Hugo J. |
author_facet | Zhang, Ke Li, Zhihong Jaiswal, Manish Bayat, Vafa Xiong, Bo Sandoval, Hector Charng, Wu-Lin David, Gabriela Haueter, Claire Yamamoto, Shinya Graham, Brett H. Bellen, Hugo J. |
author_sort | Zhang, Ke |
collection | PubMed |
description | Mitochondrial complex I (CI) is an essential component in energy production through oxidative phosphorylation. Most CI subunits are encoded by nuclear genes, translated in the cytoplasm, and imported into mitochondria. Upon entry, they are embedded into the mitochondrial inner membrane. How these membrane-associated proteins cope with the hydrophilic cytoplasmic environment before import is unknown. In a forward genetic screen to identify genes that cause neurodegeneration, we identified sicily, the Drosophila melanogaster homologue of human C8ORF38, the loss of which causes Leigh syndrome. We show that in the cytoplasm, Sicily preprotein interacts with cytosolic Hsp90 to chaperone the CI subunit, ND42, before mitochondrial import. Loss of Sicily leads to loss of CI proteins and preproteins in both mitochondria and cytoplasm, respectively, and causes a CI deficiency and neurodegeneration. Our data indicate that cytosolic chaperones are required for the subcellular transport of ND42. |
format | Online Article Text |
id | pubmed-3601355 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-36013552013-09-18 The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit Zhang, Ke Li, Zhihong Jaiswal, Manish Bayat, Vafa Xiong, Bo Sandoval, Hector Charng, Wu-Lin David, Gabriela Haueter, Claire Yamamoto, Shinya Graham, Brett H. Bellen, Hugo J. J Cell Biol Research Articles Mitochondrial complex I (CI) is an essential component in energy production through oxidative phosphorylation. Most CI subunits are encoded by nuclear genes, translated in the cytoplasm, and imported into mitochondria. Upon entry, they are embedded into the mitochondrial inner membrane. How these membrane-associated proteins cope with the hydrophilic cytoplasmic environment before import is unknown. In a forward genetic screen to identify genes that cause neurodegeneration, we identified sicily, the Drosophila melanogaster homologue of human C8ORF38, the loss of which causes Leigh syndrome. We show that in the cytoplasm, Sicily preprotein interacts with cytosolic Hsp90 to chaperone the CI subunit, ND42, before mitochondrial import. Loss of Sicily leads to loss of CI proteins and preproteins in both mitochondria and cytoplasm, respectively, and causes a CI deficiency and neurodegeneration. Our data indicate that cytosolic chaperones are required for the subcellular transport of ND42. The Rockefeller University Press 2013-03-18 /pmc/articles/PMC3601355/ /pubmed/23509070 http://dx.doi.org/10.1083/jcb.201208033 Text en © 2013 Zhang et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Research Articles Zhang, Ke Li, Zhihong Jaiswal, Manish Bayat, Vafa Xiong, Bo Sandoval, Hector Charng, Wu-Lin David, Gabriela Haueter, Claire Yamamoto, Shinya Graham, Brett H. Bellen, Hugo J. The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit |
title | The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit |
title_full | The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit |
title_fullStr | The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit |
title_full_unstemmed | The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit |
title_short | The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit |
title_sort | c8orf38 homologue sicily is a cytosolic chaperone for a mitochondrial complex i subunit |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601355/ https://www.ncbi.nlm.nih.gov/pubmed/23509070 http://dx.doi.org/10.1083/jcb.201208033 |
work_keys_str_mv | AT zhangke thec8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT lizhihong thec8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT jaiswalmanish thec8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT bayatvafa thec8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT xiongbo thec8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT sandovalhector thec8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT charngwulin thec8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT davidgabriela thec8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT haueterclaire thec8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT yamamotoshinya thec8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT grahambretth thec8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT bellenhugoj thec8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT zhangke c8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT lizhihong c8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT jaiswalmanish c8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT bayatvafa c8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT xiongbo c8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT sandovalhector c8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT charngwulin c8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT davidgabriela c8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT haueterclaire c8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT yamamotoshinya c8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT grahambretth c8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit AT bellenhugoj c8orf38homologuesicilyisacytosolicchaperoneforamitochondrialcomplexisubunit |