Cargando…
Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation
Smooth-pursuit eye movements allow primates to track moving objects. Efficient pursuit requires appropriate target selection and predictive compensation for inherent processing delays. Prediction depends on expectation of future object motion, storage of motion information and use of extra-retinal m...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601599/ https://www.ncbi.nlm.nih.gov/pubmed/23515488 http://dx.doi.org/10.3389/fnsys.2013.00004 |
_version_ | 1782263490205974528 |
---|---|
author | Fukushima, Kikuro Fukushima, Junko Warabi, Tateo Barnes, Graham R. |
author_facet | Fukushima, Kikuro Fukushima, Junko Warabi, Tateo Barnes, Graham R. |
author_sort | Fukushima, Kikuro |
collection | PubMed |
description | Smooth-pursuit eye movements allow primates to track moving objects. Efficient pursuit requires appropriate target selection and predictive compensation for inherent processing delays. Prediction depends on expectation of future object motion, storage of motion information and use of extra-retinal mechanisms in addition to visual feedback. We present behavioral evidence of how cognitive processes are involved in predictive pursuit in normal humans and then describe neuronal responses in monkeys and behavioral responses in patients using a new technique to test these cognitive controls. The new technique examines the neural substrate of working memory and movement preparation for predictive pursuit by using a memory-based task in macaque monkeys trained to pursue (go) or not pursue (no-go) according to a go/no-go cue, in a direction based on memory of a previously presented visual motion display. Single-unit task-related neuronal activity was examined in medial superior temporal cortex (MST), supplementary eye fields (SEF), caudal frontal eye fields (FEF), cerebellar dorsal vermis lobules VI–VII, caudal fastigial nuclei (cFN), and floccular region. Neuronal activity reflecting working memory of visual motion direction and go/no-go selection was found predominantly in SEF, cerebellar dorsal vermis and cFN, whereas movement preparation related signals were found predominantly in caudal FEF and the same cerebellar areas. Chemical inactivation produced effects consistent with differences in signals represented in each area. When applied to patients with Parkinson's disease (PD), the task revealed deficits in movement preparation but not working memory. In contrast, patients with frontal cortical or cerebellar dysfunction had high error rates, suggesting impaired working memory. We show how neuronal activity may be explained by models of retinal and extra-retinal interaction in target selection and predictive control and thus aid understanding of underlying pathophysiology. |
format | Online Article Text |
id | pubmed-3601599 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-36015992013-03-19 Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation Fukushima, Kikuro Fukushima, Junko Warabi, Tateo Barnes, Graham R. Front Syst Neurosci Neuroscience Smooth-pursuit eye movements allow primates to track moving objects. Efficient pursuit requires appropriate target selection and predictive compensation for inherent processing delays. Prediction depends on expectation of future object motion, storage of motion information and use of extra-retinal mechanisms in addition to visual feedback. We present behavioral evidence of how cognitive processes are involved in predictive pursuit in normal humans and then describe neuronal responses in monkeys and behavioral responses in patients using a new technique to test these cognitive controls. The new technique examines the neural substrate of working memory and movement preparation for predictive pursuit by using a memory-based task in macaque monkeys trained to pursue (go) or not pursue (no-go) according to a go/no-go cue, in a direction based on memory of a previously presented visual motion display. Single-unit task-related neuronal activity was examined in medial superior temporal cortex (MST), supplementary eye fields (SEF), caudal frontal eye fields (FEF), cerebellar dorsal vermis lobules VI–VII, caudal fastigial nuclei (cFN), and floccular region. Neuronal activity reflecting working memory of visual motion direction and go/no-go selection was found predominantly in SEF, cerebellar dorsal vermis and cFN, whereas movement preparation related signals were found predominantly in caudal FEF and the same cerebellar areas. Chemical inactivation produced effects consistent with differences in signals represented in each area. When applied to patients with Parkinson's disease (PD), the task revealed deficits in movement preparation but not working memory. In contrast, patients with frontal cortical or cerebellar dysfunction had high error rates, suggesting impaired working memory. We show how neuronal activity may be explained by models of retinal and extra-retinal interaction in target selection and predictive control and thus aid understanding of underlying pathophysiology. Frontiers Media S.A. 2013-03-19 /pmc/articles/PMC3601599/ /pubmed/23515488 http://dx.doi.org/10.3389/fnsys.2013.00004 Text en Copyright © 2013 Fukushima, Fukushima, Warabi and Barnes. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
spellingShingle | Neuroscience Fukushima, Kikuro Fukushima, Junko Warabi, Tateo Barnes, Graham R. Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation |
title | Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation |
title_full | Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation |
title_fullStr | Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation |
title_full_unstemmed | Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation |
title_short | Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation |
title_sort | cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601599/ https://www.ncbi.nlm.nih.gov/pubmed/23515488 http://dx.doi.org/10.3389/fnsys.2013.00004 |
work_keys_str_mv | AT fukushimakikuro cognitiveprocessesinvolvedinsmoothpursuiteyemovementsbehavioralevidenceneuralsubstrateandclinicalcorrelation AT fukushimajunko cognitiveprocessesinvolvedinsmoothpursuiteyemovementsbehavioralevidenceneuralsubstrateandclinicalcorrelation AT warabitateo cognitiveprocessesinvolvedinsmoothpursuiteyemovementsbehavioralevidenceneuralsubstrateandclinicalcorrelation AT barnesgrahamr cognitiveprocessesinvolvedinsmoothpursuiteyemovementsbehavioralevidenceneuralsubstrateandclinicalcorrelation |