Cargando…
Proteomic Identification of Genes Associated with Maize Grain-Filling Rate
Grain filling during the linear phase contributes most of the dry matter accumulated in the maize kernel, which in turn determines the final grain yield. Endosperms and embryos of three elite maize hybrids (Zhengdan 958, Nongda 108, and Pioneer 335) were sampled 17, 22, 25, and 28 days after pollina...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601958/ https://www.ncbi.nlm.nih.gov/pubmed/23527170 http://dx.doi.org/10.1371/journal.pone.0059353 |
_version_ | 1782263504602923008 |
---|---|
author | Jin, Xining Fu, Zhiyuan Ding, Dong Li, Weihua Liu, Zonghua Tang, Jihua |
author_facet | Jin, Xining Fu, Zhiyuan Ding, Dong Li, Weihua Liu, Zonghua Tang, Jihua |
author_sort | Jin, Xining |
collection | PubMed |
description | Grain filling during the linear phase contributes most of the dry matter accumulated in the maize kernel, which in turn determines the final grain yield. Endosperms and embryos of three elite maize hybrids (Zhengdan 958, Nongda 108, and Pioneer 335) were sampled 17, 22, 25, and 28 days after pollination, during the linear phase of grain filling, for proteomic analysis to explore the regulatory factors critical for grain filling rate. In total, 39 and 43 protein spots that showed more than 2-fold changes in abundance at P<0.01 between any two sampling stages in the endosperm and embryo were analyzed by protein mass spectrometry. The changing patterns in expression index of these proteins in the endosperm were evenly distributed, whereas up-regulation patterns predominated (74%) in the embryo. Functional analysis revealed that metabolism was the largest category, represented by nine proteins in the endosperm and 12 proteins in the embryo, of the proteins that significantly changed in abundance. Glycolysis, a critical process both for glucose conversion into pyruvate and for release of free energy and reducing power, and proteins related to redox homeostasis were emphasized in the endosperm. Additionally, lipid, nitrogen, and inositol metabolism related to fatty acid biosynthesis and late embryogenesis abundant proteins were emphasized in the embryo. One protein related to cellular redox equilibrium, which showed a more than 50-fold change in abundance and was co-localized with a quantitative trait locus for grain yield on chromosome 1, was further investigated by transcriptional profile implying consistent expression pattern with protein accumulation. The present results provide a first step towards elucidation of the gene network responsible for regulation of grain filling in maize. |
format | Online Article Text |
id | pubmed-3601958 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36019582013-03-22 Proteomic Identification of Genes Associated with Maize Grain-Filling Rate Jin, Xining Fu, Zhiyuan Ding, Dong Li, Weihua Liu, Zonghua Tang, Jihua PLoS One Research Article Grain filling during the linear phase contributes most of the dry matter accumulated in the maize kernel, which in turn determines the final grain yield. Endosperms and embryos of three elite maize hybrids (Zhengdan 958, Nongda 108, and Pioneer 335) were sampled 17, 22, 25, and 28 days after pollination, during the linear phase of grain filling, for proteomic analysis to explore the regulatory factors critical for grain filling rate. In total, 39 and 43 protein spots that showed more than 2-fold changes in abundance at P<0.01 between any two sampling stages in the endosperm and embryo were analyzed by protein mass spectrometry. The changing patterns in expression index of these proteins in the endosperm were evenly distributed, whereas up-regulation patterns predominated (74%) in the embryo. Functional analysis revealed that metabolism was the largest category, represented by nine proteins in the endosperm and 12 proteins in the embryo, of the proteins that significantly changed in abundance. Glycolysis, a critical process both for glucose conversion into pyruvate and for release of free energy and reducing power, and proteins related to redox homeostasis were emphasized in the endosperm. Additionally, lipid, nitrogen, and inositol metabolism related to fatty acid biosynthesis and late embryogenesis abundant proteins were emphasized in the embryo. One protein related to cellular redox equilibrium, which showed a more than 50-fold change in abundance and was co-localized with a quantitative trait locus for grain yield on chromosome 1, was further investigated by transcriptional profile implying consistent expression pattern with protein accumulation. The present results provide a first step towards elucidation of the gene network responsible for regulation of grain filling in maize. Public Library of Science 2013-03-19 /pmc/articles/PMC3601958/ /pubmed/23527170 http://dx.doi.org/10.1371/journal.pone.0059353 Text en © 2013 Jin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Jin, Xining Fu, Zhiyuan Ding, Dong Li, Weihua Liu, Zonghua Tang, Jihua Proteomic Identification of Genes Associated with Maize Grain-Filling Rate |
title | Proteomic Identification of Genes Associated with Maize Grain-Filling Rate |
title_full | Proteomic Identification of Genes Associated with Maize Grain-Filling Rate |
title_fullStr | Proteomic Identification of Genes Associated with Maize Grain-Filling Rate |
title_full_unstemmed | Proteomic Identification of Genes Associated with Maize Grain-Filling Rate |
title_short | Proteomic Identification of Genes Associated with Maize Grain-Filling Rate |
title_sort | proteomic identification of genes associated with maize grain-filling rate |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601958/ https://www.ncbi.nlm.nih.gov/pubmed/23527170 http://dx.doi.org/10.1371/journal.pone.0059353 |
work_keys_str_mv | AT jinxining proteomicidentificationofgenesassociatedwithmaizegrainfillingrate AT fuzhiyuan proteomicidentificationofgenesassociatedwithmaizegrainfillingrate AT dingdong proteomicidentificationofgenesassociatedwithmaizegrainfillingrate AT liweihua proteomicidentificationofgenesassociatedwithmaizegrainfillingrate AT liuzonghua proteomicidentificationofgenesassociatedwithmaizegrainfillingrate AT tangjihua proteomicidentificationofgenesassociatedwithmaizegrainfillingrate |