Cargando…
The Rationale for Using Rifabutin in the Treatment of MDR and XDR Tuberculosis Outbreaks
Genetically related Mycobacterium tuberculosis strains with alterations at codon 516 in the rpoB gene were observed amongst a substantial number of patients with drug resistant tuberculosis in the Eastern Cape Province (ECP) of South Africa. Mutations at codon 516 are usually associated with lower l...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602005/ https://www.ncbi.nlm.nih.gov/pubmed/23527189 http://dx.doi.org/10.1371/journal.pone.0059414 |
_version_ | 1782263514888404992 |
---|---|
author | Sirgel, Frederick A. Warren, Robin M. Böttger, Erik C. Klopper, Marisa Victor, Thomas C. van Helden, Paul D. |
author_facet | Sirgel, Frederick A. Warren, Robin M. Böttger, Erik C. Klopper, Marisa Victor, Thomas C. van Helden, Paul D. |
author_sort | Sirgel, Frederick A. |
collection | PubMed |
description | Genetically related Mycobacterium tuberculosis strains with alterations at codon 516 in the rpoB gene were observed amongst a substantial number of patients with drug resistant tuberculosis in the Eastern Cape Province (ECP) of South Africa. Mutations at codon 516 are usually associated with lower level rifampicin (RIF) resistance, while susceptibility to rifabutin (RFB) remains intact. This study was conducted to assess the rationale for using RFB as a substitution for RIF in the treatment of MDR and XDR tuberculosis outbreaks. Minimum inhibitory concentrations (MICs) of 34 drug resistant clinical isolates of M tuberculosis were determined by MGIT 960 and correlated with rpoB mutations. RFB MICs ranged from 0.125 to 0.25 µg/ml in the 34 test isolates thereby confirming phenotypic susceptibility as per critical concentration (CC) of 0.5 µg/ml. The corresponding RIF MICs ranged between 5 and 15 µg/ml, which is well above the CC of 1.0 µg/ml. Molecular-based drug susceptibility testing provides important pharmacogenetic insight by demonstrating a direct correlation between defined rpoB mutation and the level of RFB susceptibility. We suggest that isolates with marginally reduced susceptibility as compared to the epidemiological cut-off for wild-type strains (0.064 µg/ml), but lower than the current CC (≤0.5 µg/ml), are categorised as intermediate. Two breakpoints (0.064 µg/ml and 0.5 µg/ml) are recommended to distinguish between susceptible, intermediate and RFB resistant strains. This concept may assist clinicians and policy makers to make objective therapeutic decisions, especially in situations where therapeutic options are limited. The use of RFB in the ECP may improve therapeutic success and consequently minimise the risk of ongoing transmission of drug resistant M. tuberculosis strains. |
format | Online Article Text |
id | pubmed-3602005 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36020052013-03-22 The Rationale for Using Rifabutin in the Treatment of MDR and XDR Tuberculosis Outbreaks Sirgel, Frederick A. Warren, Robin M. Böttger, Erik C. Klopper, Marisa Victor, Thomas C. van Helden, Paul D. PLoS One Research Article Genetically related Mycobacterium tuberculosis strains with alterations at codon 516 in the rpoB gene were observed amongst a substantial number of patients with drug resistant tuberculosis in the Eastern Cape Province (ECP) of South Africa. Mutations at codon 516 are usually associated with lower level rifampicin (RIF) resistance, while susceptibility to rifabutin (RFB) remains intact. This study was conducted to assess the rationale for using RFB as a substitution for RIF in the treatment of MDR and XDR tuberculosis outbreaks. Minimum inhibitory concentrations (MICs) of 34 drug resistant clinical isolates of M tuberculosis were determined by MGIT 960 and correlated with rpoB mutations. RFB MICs ranged from 0.125 to 0.25 µg/ml in the 34 test isolates thereby confirming phenotypic susceptibility as per critical concentration (CC) of 0.5 µg/ml. The corresponding RIF MICs ranged between 5 and 15 µg/ml, which is well above the CC of 1.0 µg/ml. Molecular-based drug susceptibility testing provides important pharmacogenetic insight by demonstrating a direct correlation between defined rpoB mutation and the level of RFB susceptibility. We suggest that isolates with marginally reduced susceptibility as compared to the epidemiological cut-off for wild-type strains (0.064 µg/ml), but lower than the current CC (≤0.5 µg/ml), are categorised as intermediate. Two breakpoints (0.064 µg/ml and 0.5 µg/ml) are recommended to distinguish between susceptible, intermediate and RFB resistant strains. This concept may assist clinicians and policy makers to make objective therapeutic decisions, especially in situations where therapeutic options are limited. The use of RFB in the ECP may improve therapeutic success and consequently minimise the risk of ongoing transmission of drug resistant M. tuberculosis strains. Public Library of Science 2013-03-19 /pmc/articles/PMC3602005/ /pubmed/23527189 http://dx.doi.org/10.1371/journal.pone.0059414 Text en © 2013 Sirgel et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Sirgel, Frederick A. Warren, Robin M. Böttger, Erik C. Klopper, Marisa Victor, Thomas C. van Helden, Paul D. The Rationale for Using Rifabutin in the Treatment of MDR and XDR Tuberculosis Outbreaks |
title | The Rationale for Using Rifabutin in the Treatment of MDR and XDR Tuberculosis Outbreaks |
title_full | The Rationale for Using Rifabutin in the Treatment of MDR and XDR Tuberculosis Outbreaks |
title_fullStr | The Rationale for Using Rifabutin in the Treatment of MDR and XDR Tuberculosis Outbreaks |
title_full_unstemmed | The Rationale for Using Rifabutin in the Treatment of MDR and XDR Tuberculosis Outbreaks |
title_short | The Rationale for Using Rifabutin in the Treatment of MDR and XDR Tuberculosis Outbreaks |
title_sort | rationale for using rifabutin in the treatment of mdr and xdr tuberculosis outbreaks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602005/ https://www.ncbi.nlm.nih.gov/pubmed/23527189 http://dx.doi.org/10.1371/journal.pone.0059414 |
work_keys_str_mv | AT sirgelfredericka therationaleforusingrifabutininthetreatmentofmdrandxdrtuberculosisoutbreaks AT warrenrobinm therationaleforusingrifabutininthetreatmentofmdrandxdrtuberculosisoutbreaks AT bottgererikc therationaleforusingrifabutininthetreatmentofmdrandxdrtuberculosisoutbreaks AT kloppermarisa therationaleforusingrifabutininthetreatmentofmdrandxdrtuberculosisoutbreaks AT victorthomasc therationaleforusingrifabutininthetreatmentofmdrandxdrtuberculosisoutbreaks AT vanheldenpauld therationaleforusingrifabutininthetreatmentofmdrandxdrtuberculosisoutbreaks AT sirgelfredericka rationaleforusingrifabutininthetreatmentofmdrandxdrtuberculosisoutbreaks AT warrenrobinm rationaleforusingrifabutininthetreatmentofmdrandxdrtuberculosisoutbreaks AT bottgererikc rationaleforusingrifabutininthetreatmentofmdrandxdrtuberculosisoutbreaks AT kloppermarisa rationaleforusingrifabutininthetreatmentofmdrandxdrtuberculosisoutbreaks AT victorthomasc rationaleforusingrifabutininthetreatmentofmdrandxdrtuberculosisoutbreaks AT vanheldenpauld rationaleforusingrifabutininthetreatmentofmdrandxdrtuberculosisoutbreaks |