Cargando…
Identifying Subspace Gene Clusters from Microarray Data Using Low-Rank Representation
Identifying subspace gene clusters from the gene expression data is useful for discovering novel functional gene interactions. In this paper, we propose to use low-rank representation (LRR) to identify the subspace gene clusters from microarray data. LRR seeks the lowest-rank representation among al...
Autores principales: | Cui, Yan, Zheng, Chun-Hou, Yang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602020/ https://www.ncbi.nlm.nih.gov/pubmed/23527177 http://dx.doi.org/10.1371/journal.pone.0059377 |
Ejemplares similares
-
Generalized gene co-expression analysis via subspace clustering using low-rank representation
por: Wang, Tongxin, et al.
Publicado: (2019) -
One-Step Robust Low-Rank Subspace Segmentation for Tumor Sample Clustering
por: Liu, Jian, et al.
Publicado: (2021) -
Robust auto-weighted multi-view subspace clustering with common subspace representation matrix
por: Zhuge, Wenzhang, et al.
Publicado: (2017) -
Discriminant Subspace Low-Rank Representation Algorithm for Electroencephalography-Based Alzheimer’s Disease Recognition
por: Tang, Tusheng, et al.
Publicado: (2022) -
LogDet Rank Minimization with Application to Subspace Clustering
por: Kang, Zhao, et al.
Publicado: (2015)