Cargando…
Spatial Interactions between Successive Eye and Arm Movements: Signal Type Matters
Spatial interactions between consecutive movements are often attributed to inhibition of return (IOR), a phenomenon in which responses to previously signalled locations are slower than responses to unsignalled locations. In two experiments using peripheral target signals offset by 0°, 90°, or 180°,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602592/ https://www.ncbi.nlm.nih.gov/pubmed/23527038 http://dx.doi.org/10.1371/journal.pone.0058850 |
Sumario: | Spatial interactions between consecutive movements are often attributed to inhibition of return (IOR), a phenomenon in which responses to previously signalled locations are slower than responses to unsignalled locations. In two experiments using peripheral target signals offset by 0°, 90°, or 180°, we show that consecutive saccadic (Experiment 1) and reaching (Experiment 3) responses exhibit a monotonic pattern of reaction times consistent with the currently established spatial distribution of IOR. In contrast, in two experiments with central target signals (i.e., arrowheads pointing at target locations), we find a non-monotonic pattern of reaction times for saccades (Experiment 2) and reaching movements (Experiment 4). The difference in the patterns of results observed demonstrates different behavioral effects that depend on signal type. The pattern of results observed for central stimuli are consistent with a model in which neural adaptation is occurring within motor networks encoding movement direction in a distributed manner. |
---|