Cargando…
A Comparison of the Spatial Linear Model to Nearest Neighbor (k-NN) Methods for Forestry Applications
Forest surveys provide critical information for many diverse interests. Data are often collected from samples, and from these samples, maps of resources and estimates of aerial totals or averages are required. In this paper, two approaches for mapping and estimating totals; the spatial linear model...
Autores principales: | Ver Hoef, Jay M., Temesgen, Hailemariam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602606/ https://www.ncbi.nlm.nih.gov/pubmed/23527110 http://dx.doi.org/10.1371/journal.pone.0059129 |
Ejemplares similares
-
Compressed kNN: K-Nearest Neighbors with Data Compression
por: Salvador–Meneses, Jaime, et al.
Publicado: (2019) -
nnSVG for the scalable identification of spatially variable genes using nearest-neighbor Gaussian processes
por: Weber, Lukas M., et al.
Publicado: (2023) -
Lectures on the nearest neighbor method
por: Biau, Gérard, et al.
Publicado: (2015) -
Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs)()
por: Steenwijk, Martijn D., et al.
Publicado: (2013) -
Scalable Predictions for Spatial Probit Linear Mixed Models Using Nearest Neighbor Gaussian Processes
por: Saha, Arkajyoti, et al.
Publicado: (2022)