Cargando…

Aldosterone Increases Early Atherosclerosis and Promotes Plaque Inflammation Through a Placental Growth Factor‐Dependent Mechanism

BACKGROUND: Aldosterone levels correlate with the incidence of myocardial infarction and mortality in cardiovascular patients. Aldosterone promotes atherosclerosis in animal models, but the mechanisms are poorly understood. METHODS AND RESULTS: Aldosterone was infused to achieve pathologically relev...

Descripción completa

Detalles Bibliográficos
Autores principales: McGraw, Adam P., Bagley, Jessamyn, Chen, Wei‐Sheng, Galayda, Carol, Nickerson, Heather, Armani, Andrea, Caprio, Massimiliano, Carmeliet, Peter, Jaffe, Iris Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603255/
https://www.ncbi.nlm.nih.gov/pubmed/23525413
http://dx.doi.org/10.1161/JAHA.112.000018
_version_ 1782263658600988672
author McGraw, Adam P.
Bagley, Jessamyn
Chen, Wei‐Sheng
Galayda, Carol
Nickerson, Heather
Armani, Andrea
Caprio, Massimiliano
Carmeliet, Peter
Jaffe, Iris Z.
author_facet McGraw, Adam P.
Bagley, Jessamyn
Chen, Wei‐Sheng
Galayda, Carol
Nickerson, Heather
Armani, Andrea
Caprio, Massimiliano
Carmeliet, Peter
Jaffe, Iris Z.
author_sort McGraw, Adam P.
collection PubMed
description BACKGROUND: Aldosterone levels correlate with the incidence of myocardial infarction and mortality in cardiovascular patients. Aldosterone promotes atherosclerosis in animal models, but the mechanisms are poorly understood. METHODS AND RESULTS: Aldosterone was infused to achieve pathologically relevant levels that did not increase blood pressure in the atherosclerosis‐prone apolipoprotein E–knockout mouse (ApoE−/−). Aldosterone increased atherosclerosis in the aortic root 1.8±0.1‐fold after 4 weeks and in the aortic arch 3.7±0.2‐fold after 8 weeks, without significantly affecting plaque size in the abdominal aorta or traditional cardiac risk factors. Aldosterone treatment increased lipid content of plaques (2.1±0.2‐fold) and inflammatory cell content (2.2±0.3‐fold), induced early T‐cell (2.9±0.3‐fold) and monocyte (2.3±0.3‐fold) infiltration into atherosclerosis‐prone vascular regions, and enhanced systemic inflammation with increased spleen weight (1.52±0.06‐fold) and the circulating cytokine RANTES (regulated and normal T cell secreted; 1.6±0.1‐fold). To explore the mechanism, 7 genes were examined for aldosterone regulation in the ApoE−/− aorta. Further studies focused on the proinflammatory placental growth factor (PlGF), which was released from aldosterone‐treated ApoE−/− vessels. Activation of the mineralocorticoid receptor by aldosterone in human coronary artery smooth muscle cells (SMCs) caused the release of factors that promote monocyte chemotaxis, which was inhibited by blocking monocyte PlGF receptors. Furthermore, PlGF‐deficient ApoE−/− mice were resistant to early aldosterone‐induced increases in plaque burden and inflammation. CONCLUSIONS: Aldosterone increases early atherosclerosis in regions of turbulent blood flow and promotes an inflammatory plaque phenotype that is associated with rupture in humans. The mechanism may involve SMC release of soluble factors that recruit activated leukocytes to the vessel wall via PlGF signaling. These findings identify a novel mechanism and potential treatment target for aldosterone‐induced ischemia in humans.
format Online
Article
Text
id pubmed-3603255
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-36032552013-03-27 Aldosterone Increases Early Atherosclerosis and Promotes Plaque Inflammation Through a Placental Growth Factor‐Dependent Mechanism McGraw, Adam P. Bagley, Jessamyn Chen, Wei‐Sheng Galayda, Carol Nickerson, Heather Armani, Andrea Caprio, Massimiliano Carmeliet, Peter Jaffe, Iris Z. J Am Heart Assoc Original Research BACKGROUND: Aldosterone levels correlate with the incidence of myocardial infarction and mortality in cardiovascular patients. Aldosterone promotes atherosclerosis in animal models, but the mechanisms are poorly understood. METHODS AND RESULTS: Aldosterone was infused to achieve pathologically relevant levels that did not increase blood pressure in the atherosclerosis‐prone apolipoprotein E–knockout mouse (ApoE−/−). Aldosterone increased atherosclerosis in the aortic root 1.8±0.1‐fold after 4 weeks and in the aortic arch 3.7±0.2‐fold after 8 weeks, without significantly affecting plaque size in the abdominal aorta or traditional cardiac risk factors. Aldosterone treatment increased lipid content of plaques (2.1±0.2‐fold) and inflammatory cell content (2.2±0.3‐fold), induced early T‐cell (2.9±0.3‐fold) and monocyte (2.3±0.3‐fold) infiltration into atherosclerosis‐prone vascular regions, and enhanced systemic inflammation with increased spleen weight (1.52±0.06‐fold) and the circulating cytokine RANTES (regulated and normal T cell secreted; 1.6±0.1‐fold). To explore the mechanism, 7 genes were examined for aldosterone regulation in the ApoE−/− aorta. Further studies focused on the proinflammatory placental growth factor (PlGF), which was released from aldosterone‐treated ApoE−/− vessels. Activation of the mineralocorticoid receptor by aldosterone in human coronary artery smooth muscle cells (SMCs) caused the release of factors that promote monocyte chemotaxis, which was inhibited by blocking monocyte PlGF receptors. Furthermore, PlGF‐deficient ApoE−/− mice were resistant to early aldosterone‐induced increases in plaque burden and inflammation. CONCLUSIONS: Aldosterone increases early atherosclerosis in regions of turbulent blood flow and promotes an inflammatory plaque phenotype that is associated with rupture in humans. The mechanism may involve SMC release of soluble factors that recruit activated leukocytes to the vessel wall via PlGF signaling. These findings identify a novel mechanism and potential treatment target for aldosterone‐induced ischemia in humans. Blackwell Publishing Ltd 2013-02-22 /pmc/articles/PMC3603255/ /pubmed/23525413 http://dx.doi.org/10.1161/JAHA.112.000018 Text en © 2013 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley-Blackwell. http://creativecommons.org/licenses/by/2.5/ This is an Open Access article under the terms of the Creative Commons Attribution Noncommercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Original Research
McGraw, Adam P.
Bagley, Jessamyn
Chen, Wei‐Sheng
Galayda, Carol
Nickerson, Heather
Armani, Andrea
Caprio, Massimiliano
Carmeliet, Peter
Jaffe, Iris Z.
Aldosterone Increases Early Atherosclerosis and Promotes Plaque Inflammation Through a Placental Growth Factor‐Dependent Mechanism
title Aldosterone Increases Early Atherosclerosis and Promotes Plaque Inflammation Through a Placental Growth Factor‐Dependent Mechanism
title_full Aldosterone Increases Early Atherosclerosis and Promotes Plaque Inflammation Through a Placental Growth Factor‐Dependent Mechanism
title_fullStr Aldosterone Increases Early Atherosclerosis and Promotes Plaque Inflammation Through a Placental Growth Factor‐Dependent Mechanism
title_full_unstemmed Aldosterone Increases Early Atherosclerosis and Promotes Plaque Inflammation Through a Placental Growth Factor‐Dependent Mechanism
title_short Aldosterone Increases Early Atherosclerosis and Promotes Plaque Inflammation Through a Placental Growth Factor‐Dependent Mechanism
title_sort aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor‐dependent mechanism
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603255/
https://www.ncbi.nlm.nih.gov/pubmed/23525413
http://dx.doi.org/10.1161/JAHA.112.000018
work_keys_str_mv AT mcgrawadamp aldosteroneincreasesearlyatherosclerosisandpromotesplaqueinflammationthroughaplacentalgrowthfactordependentmechanism
AT bagleyjessamyn aldosteroneincreasesearlyatherosclerosisandpromotesplaqueinflammationthroughaplacentalgrowthfactordependentmechanism
AT chenweisheng aldosteroneincreasesearlyatherosclerosisandpromotesplaqueinflammationthroughaplacentalgrowthfactordependentmechanism
AT galaydacarol aldosteroneincreasesearlyatherosclerosisandpromotesplaqueinflammationthroughaplacentalgrowthfactordependentmechanism
AT nickersonheather aldosteroneincreasesearlyatherosclerosisandpromotesplaqueinflammationthroughaplacentalgrowthfactordependentmechanism
AT armaniandrea aldosteroneincreasesearlyatherosclerosisandpromotesplaqueinflammationthroughaplacentalgrowthfactordependentmechanism
AT capriomassimiliano aldosteroneincreasesearlyatherosclerosisandpromotesplaqueinflammationthroughaplacentalgrowthfactordependentmechanism
AT carmelietpeter aldosteroneincreasesearlyatherosclerosisandpromotesplaqueinflammationthroughaplacentalgrowthfactordependentmechanism
AT jaffeirisz aldosteroneincreasesearlyatherosclerosisandpromotesplaqueinflammationthroughaplacentalgrowthfactordependentmechanism