Cargando…
Structure and function of cytidine monophosphate kinase from Yersinia pseudotuberculosis, essential for virulence but not for survival
The need for new antibiotics has become pressing in light of the emergence of antibiotic-resistant strains of human pathogens. Yersinia pestis, the causative agent of plague, is a public health threat and also an agent of concern in biodefence. It is a recently emerged clonal derivative of the enter...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603445/ https://www.ncbi.nlm.nih.gov/pubmed/23271832 http://dx.doi.org/10.1098/rsob.120142 |
_version_ | 1782263682807365632 |
---|---|
author | Walker, Nicola J. Clark, Elizabeth A. Ford, Donna C. Bullifent, Helen L. McAlister, Erin V. Duffield, Melanie L. Acharya, K. Ravi Oyston, Petra C. F. |
author_facet | Walker, Nicola J. Clark, Elizabeth A. Ford, Donna C. Bullifent, Helen L. McAlister, Erin V. Duffield, Melanie L. Acharya, K. Ravi Oyston, Petra C. F. |
author_sort | Walker, Nicola J. |
collection | PubMed |
description | The need for new antibiotics has become pressing in light of the emergence of antibiotic-resistant strains of human pathogens. Yersinia pestis, the causative agent of plague, is a public health threat and also an agent of concern in biodefence. It is a recently emerged clonal derivative of the enteric pathogen Yersinia pseudotuberculosis. Previously, we developed a bioinformatic approach to identify proteins that may be suitable targets for antimicrobial therapy and in particular for the treatment of plague. One such target was cytidine monophosphate (CMP) kinase, which is an essential gene in some organisms. Previously, we had thought CMP kinase was essential for Y. pseudotuberculosis, but by modification of the mutagenesis approach, we report here the production and characterization of a Δcmk mutant. The isogenic mutant had a growth defect relative to the parental strain, and was highly attenuated in mice. We have also elucidated the structure of the CMP kinase to 2.32 Å, and identified three key residues in the active site that are essential for activity of the enzyme. These findings will have implications for the development of novel CMP kinase inhibitors for therapeutic use. |
format | Online Article Text |
id | pubmed-3603445 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-36034452013-03-27 Structure and function of cytidine monophosphate kinase from Yersinia pseudotuberculosis, essential for virulence but not for survival Walker, Nicola J. Clark, Elizabeth A. Ford, Donna C. Bullifent, Helen L. McAlister, Erin V. Duffield, Melanie L. Acharya, K. Ravi Oyston, Petra C. F. Open Biol Research The need for new antibiotics has become pressing in light of the emergence of antibiotic-resistant strains of human pathogens. Yersinia pestis, the causative agent of plague, is a public health threat and also an agent of concern in biodefence. It is a recently emerged clonal derivative of the enteric pathogen Yersinia pseudotuberculosis. Previously, we developed a bioinformatic approach to identify proteins that may be suitable targets for antimicrobial therapy and in particular for the treatment of plague. One such target was cytidine monophosphate (CMP) kinase, which is an essential gene in some organisms. Previously, we had thought CMP kinase was essential for Y. pseudotuberculosis, but by modification of the mutagenesis approach, we report here the production and characterization of a Δcmk mutant. The isogenic mutant had a growth defect relative to the parental strain, and was highly attenuated in mice. We have also elucidated the structure of the CMP kinase to 2.32 Å, and identified three key residues in the active site that are essential for activity of the enzyme. These findings will have implications for the development of novel CMP kinase inhibitors for therapeutic use. The Royal Society 2012-12 /pmc/articles/PMC3603445/ /pubmed/23271832 http://dx.doi.org/10.1098/rsob.120142 Text en http://creativecommons.org/licenses/by/3.0/ © 2012 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Walker, Nicola J. Clark, Elizabeth A. Ford, Donna C. Bullifent, Helen L. McAlister, Erin V. Duffield, Melanie L. Acharya, K. Ravi Oyston, Petra C. F. Structure and function of cytidine monophosphate kinase from Yersinia pseudotuberculosis, essential for virulence but not for survival |
title | Structure and function of cytidine monophosphate kinase from Yersinia pseudotuberculosis, essential for virulence but not for survival |
title_full | Structure and function of cytidine monophosphate kinase from Yersinia pseudotuberculosis, essential for virulence but not for survival |
title_fullStr | Structure and function of cytidine monophosphate kinase from Yersinia pseudotuberculosis, essential for virulence but not for survival |
title_full_unstemmed | Structure and function of cytidine monophosphate kinase from Yersinia pseudotuberculosis, essential for virulence but not for survival |
title_short | Structure and function of cytidine monophosphate kinase from Yersinia pseudotuberculosis, essential for virulence but not for survival |
title_sort | structure and function of cytidine monophosphate kinase from yersinia pseudotuberculosis, essential for virulence but not for survival |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603445/ https://www.ncbi.nlm.nih.gov/pubmed/23271832 http://dx.doi.org/10.1098/rsob.120142 |
work_keys_str_mv | AT walkernicolaj structureandfunctionofcytidinemonophosphatekinasefromyersiniapseudotuberculosisessentialforvirulencebutnotforsurvival AT clarkelizabetha structureandfunctionofcytidinemonophosphatekinasefromyersiniapseudotuberculosisessentialforvirulencebutnotforsurvival AT forddonnac structureandfunctionofcytidinemonophosphatekinasefromyersiniapseudotuberculosisessentialforvirulencebutnotforsurvival AT bullifenthelenl structureandfunctionofcytidinemonophosphatekinasefromyersiniapseudotuberculosisessentialforvirulencebutnotforsurvival AT mcalistererinv structureandfunctionofcytidinemonophosphatekinasefromyersiniapseudotuberculosisessentialforvirulencebutnotforsurvival AT duffieldmelaniel structureandfunctionofcytidinemonophosphatekinasefromyersiniapseudotuberculosisessentialforvirulencebutnotforsurvival AT acharyakravi structureandfunctionofcytidinemonophosphatekinasefromyersiniapseudotuberculosisessentialforvirulencebutnotforsurvival AT oystonpetracf structureandfunctionofcytidinemonophosphatekinasefromyersiniapseudotuberculosisessentialforvirulencebutnotforsurvival |